示例#1
0
def test_inception(inception_model_pytorch):
    """Test the InceptionBlocks model that WebGME folks provided us."""

    galaxy_images_output = torch.zeros((1, 5, 64, 64))
    ebv_output = torch.zeros((1,))
    # Run the model once to get some ground truth outpot (from PyTorch)
    output = inception_model_pytorch(galaxy_images_output, ebv_output).detach().numpy()

    # Convert to MDF
    mdf_model, params_dict = pytorch_to_mdf(
        model=inception_model_pytorch,
        args=(galaxy_images_output, ebv_output),
        example_outputs=output,
        trace=True,
    )

    # Get the graph
    mdf_graph = mdf_model.graphs[0]

    # Add inputs to the parameters dict so we can feed this to the EvaluableGraph for initialization of all
    # graph inputs.
    params_dict["input1"] = galaxy_images_output.numpy()
    params_dict["input2"] = ebv_output.numpy()

    eg = EvaluableGraph(graph=mdf_graph, verbose=False)

    eg.evaluate(initializer=params_dict)

    assert np.allclose(
        output,
        eg.enodes["Add_381"].evaluable_outputs["_381"].curr_value,
    )
示例#2
0
def test_simple_function():
    """Test a simple function"""

    def simple(x, y):
        return x + y

    mdf_model, param_dict = pytorch_to_mdf(
        model=simple,
        args=(torch.tensor(0.0), torch.tensor(0.0)),
        example_outputs=(torch.tensor(0.0)),
        use_onnx_ops=True,
    )

    _check_model(mdf_model)
示例#3
0
def test_simple_module():
    """Test a simple torch.nn.Module"""

    class Simple(torch.nn.Module):
        def forward(self, x, y):
            return x + y

    mdf_model, param_dict = pytorch_to_mdf(
        model=Simple(),
        args=(torch.tensor(0.0), torch.tensor(0.0)),
        example_outputs=(torch.tensor(0.0)),
        use_onnx_ops=True,
    )

    _check_model(mdf_model)
示例#4
0
def main():

    ddm_params = dict(
        starting_value=0.0,
        drift_rate=0.3,
        non_decision_time=0.15,
        threshold=0.6,
        noise=1.0,
        time_step_size=0.001,
    )

    # Move params to device
    for key, val in ddm_params.items():
        ddm_params[key] = torch.tensor(val).to(dev)

    # Run a single ddm
    rt, decision = ddm(**ddm_params)

    mdf_model, param_dict = pytorch_to_mdf(
        model=ddm,
        args=tuple(ddm_params.values()),
        example_outputs=(rt, decision),
        use_onnx_ops=True,
    )

    # Output the model to JSON
    mdf_model.to_json_file("ddm.json")

    import sys

    if "-graph" in sys.argv:
        mdf_model.to_graph_image(
            engine="dot",
            output_format="png",
            view_on_render=False,
            level=2,
            filename_root="ddm",
            only_warn_on_fail=
            True,  # Makes sure test of this doesn't fail on Windows on GitHub Actions
        )
示例#5
0
文件: inception.py 项目: kmantel/MDF
def main():
    # changed import call
    from modeci_mdf.execution_engine import EvaluableGraph

    # Create some test inputs for the model
    galaxy_images_output = torch.zeros((1, 5, 64, 64))
    ebv_output = torch.zeros((1, ))

    # Seed the random number generator to get deterministic behavior for weight initialization
    torch.manual_seed(0)

    model = InceptionBlocks()

    # Turn on eval mode for model to get rid of any randomization due to things like BatchNorm or Dropout
    model.eval()

    # Run the model once to get some ground truth outpot (from PyTorch)
    output = model(galaxy_images_output, ebv_output).detach().numpy()

    # Convert to MDF
    mdf_model, params_dict = pytorch_to_mdf(
        model=model,
        args=(galaxy_images_output, ebv_output),
        example_outputs=output,
        trace=True,
    )

    # Get the graph
    mdf_graph = mdf_model.graphs[0]

    # Add inputs to the parameters dict so we can feed this to the EvaluableGraph for initialization of all
    # graph inputs.
    params_dict["input1"] = galaxy_images_output.numpy()
    params_dict["input2"] = ebv_output.numpy()

    # Evaluate the model via the MDF scheduler
    eg = EvaluableGraph(graph=mdf_graph, verbose=False)
    eg.evaluate(initializer=params_dict)

    # Make sure the results are the same betweeen PyTorch and MDF
    assert np.allclose(
        output,
        eg.enodes["Add_381"].evaluable_outputs["_381"].curr_value,
    )
    print("Passed all comparison tests!")

    # Output the model to JSON
    mdf_model.to_json_file("inception.json")

    import sys

    if "-graph" in sys.argv:
        mdf_model.to_graph_image(
            engine="dot",
            output_format="png",
            view_on_render=False,
            level=1,
            filename_root="inception",
            only_warn_on_fail=
            True,  # Makes sure test of this doesn't fail on Windows on GitHub Actions
        )