def main(): images, labels = dataset.load_test_images() num_scatter = len(images) y_distribution, z = aae.encode_x_yz(images, apply_softmax=False, test=True) y = aae.argmax_onehot_from_unnormalized_distribution(y_distribution) representation = aae.to_numpy(aae.encode_yz_representation(y, z, test=True)) plot.scatter_labeled_z(representation, labels, dir=args.plot_dir)
def main(): # load MNIST images images, labels = dataset.load_test_images() # config config = aae.config num_scatter = len(images) x, _, label_ids = dataset.sample_labeled_data(images, labels, num_scatter, config.ndim_x, config.ndim_y) z = aae.to_numpy(aae.encode_x_z(x, test=True)) visualizer.plot_labeled_z(z, label_ids, dir=args.plot_dir)
def main(): # load MNIST images images, labels = dataset.load_test_images() # config config = aae.config # settings num_analogies = 10 pylab.gray() # generate style vector z x = dataset.sample_unlabeled_data(images, num_analogies, config.ndim_x, binarize=False) _, z = aae.encode_x_yz(x, apply_softmax=True) z = aae.to_numpy(z) # plot original image on the left for m in xrange(num_analogies): pylab.subplot(num_analogies, config.ndim_y + 2, m * 12 + 1) pylab.imshow(x[m].reshape((28, 28)), interpolation="none") pylab.axis("off") all_y = np.identity(config.ndim_y, dtype=np.float32) for m in xrange(num_analogies): # copy z as many as the number of classes fixed_z = np.repeat(z[m].reshape(1, -1), config.ndim_y, axis=0) gen_x = aae.to_numpy(aae.decode_yz_x(all_y, fixed_z)) # plot images generated from each label for n in xrange(config.ndim_y): pylab.subplot(num_analogies, config.ndim_y + 2, m * 12 + 3 + n) pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none") pylab.axis("off") fig = pylab.gcf() fig.set_size_inches(num_analogies, config.ndim_y) pylab.savefig("{}/analogy.png".format(args.plot_dir))
def main(): # load MNIST images images, labels = dataset.load_test_images() # config config = aae.config num_scatter = len(images) x, _, labels = dataset.sample_labeled_data(images, labels, num_scatter, config.ndim_x, config.ndim_y) y_distribution, z = aae.encode_x_yz(x, apply_softmax=False, test=True) y = aae.argmax_onehot_from_unnormalized_distribution(y_distribution) representation = aae.to_numpy(aae.encode_yz_representation(y, z, test=True)) visualizer.plot_labeled_z(representation, labels, dir=args.plot_dir)
except: pass images, labels = dataset.load_test_images() config = aae.config num_clusters = config.ndim_y num_plots_per_cluster = 11 image_width = 28 image_height = 28 ndim_x = image_width * image_height pylab.gray() # plot cluster head head_y = np.identity(config.ndim_y, dtype=np.float32) zero_z = np.zeros((config.ndim_y, config.ndim_z), dtype=np.float32) head_x = aae.to_numpy(aae.decode_yz_x(head_y, zero_z, test=True)) head_x = (head_x + 1.0) / 2.0 for n in xrange(num_clusters): pylab.subplot(num_clusters, num_plots_per_cluster + 2, n * (num_plots_per_cluster + 2) + 1) pylab.imshow(head_x[n].reshape((image_width, image_height)), interpolation="none") pylab.axis("off") # plot elements in cluster counts = [0 for i in xrange(num_clusters)] indices = np.arange(len(images)) np.random.shuffle(indices) batchsize = 500 i = 0 x_batch = np.zeros((batchsize, ndim_x), dtype=np.float32) for n in xrange(len(images) / batchsize):
def main(): images, labels = dataset.load_test_images() num_scatter = len(images) x, _, label_ids = dataset.sample_labeled_data(images, labels, num_scatter) z = aae.to_numpy(aae.encode_x_z(x, test=True)) plot.scatter_labeled_z(z, label_ids, dir=args.plot_dir)