def train_reconstruction(args): device = torch.device(args.gpu) print("Loading dataset...") train_dataset, val_dataset = load_imgseq_data(args, CONFIG) print("Loading dataset completed") train_loader, val_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=args.shuffle),\ DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) #imgseq_encoder = imgseq_model.RNNEncoder(args.embedding_dim, args.num_layer, args.latent_size, bidirectional=True) #imgseq_decoder = imgseq_model.RNNDecoder(CONFIG.MAX_SEQUENCE_LEN, args.embedding_dim, args.num_layer, args.latent_size, bidirectional=True) t1 = CONFIG.MAX_SEQUENCE_LEN t2 = int(math.floor((t1 - 3) / 1) + 1) # "2" means stride size t3 = int(math.floor((t2 - 3) / 1) + 1) imgseq_encoder = imgseq_model.ConvolutionEncoder( embedding_dim=args.embedding_dim, t3=t3, filter_size=300, filter_shape=3, latent_size=1000) imgseq_decoder = imgseq_model.DeconvolutionDecoder( embedding_dim=args.embedding_dim, t3=t3, filter_size=300, filter_shape=3, latent_size=1000) if args.resume: print("Restart from checkpoint") checkpoint = torch.load(os.path.join(CONFIG.CHECKPOINT_PATH, args.resume), map_location=lambda storage, loc: storage) start_epoch = checkpoint['epoch'] imgseq_encoder.load_state_dict(checkpoint['imgseq_encoder']) imgseq_decoder.load_state_dict(checkpoint['imgseq_decoder']) else: print("Start from initial") start_epoch = 0 imgseq_autoencoder = imgseq_model.ImgseqAutoEncoder( imgseq_encoder, imgseq_decoder) criterion = nn.MSELoss().to(device) imgseq_autoencoder.to(device) optimizer = AdamW(imgseq_autoencoder.parameters(), lr=1., weight_decay=args.weight_decay, amsgrad=True) step_size = args.half_cycle_interval * len(train_loader) clr = cyclical_lr(step_size, min_lr=args.lr, max_lr=args.lr * args.lr_factor) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, [clr]) if args.resume: optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) exp = Experiment("Image-sequence autoencoder " + str(args.latent_size), capture_io=False) for arg, value in vars(args).items(): exp.param(arg, value) try: imgseq_autoencoder.train() for epoch in range(start_epoch, args.epochs): print("Epoch: {}".format(epoch)) for steps, batch in enumerate(train_loader): torch.cuda.empty_cache() feature = Variable(batch).to(device) optimizer.zero_grad() feature_hat = imgseq_autoencoder(feature) loss = criterion(feature_hat, feature) loss.backward() optimizer.step() scheduler.step() if (steps * args.batch_size) % args.log_interval == 0: print("Epoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) print("Steps: {}".format(steps)) print("Loss: {}".format(loss.detach().item())) input_data = feature[0] del feature, feature_hat, loss exp.log("\nEpoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) _avg_loss = eval_reconstruction(imgseq_autoencoder, criterion, val_loader, device) exp.log("\nEvaluation - loss: {}".format(_avg_loss)) util.save_models( { 'epoch': epoch + 1, 'imgseq_encoder': imgseq_encoder.state_dict(), 'imgseq_decoder': imgseq_decoder.state_dict(), 'avg_loss': _avg_loss, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, CONFIG.CHECKPOINT_PATH, "imgseq_autoencoder_" + str(args.latent_size)) print("Finish!!!") finally: exp.end()
def train_reconstruction(args): device = torch.device(args.gpu) print("Loading embedding model...") with open( os.path.join(CONFIG.DATASET_PATH, args.target_dataset, 'word_embedding.p'), "rb") as f: embedding_model = cPickle.load(f) with open(os.path.join(CONFIG.DATASET_PATH, args.target_dataset, 'word_idx.json'), "r", encoding='utf-8') as f: word_idx = json.load(f) print("Loading embedding model completed") print("Loading dataset...") train_dataset, val_dataset = load_text_data(args, CONFIG, word2idx=word_idx[1]) print("Loading dataset completed") train_loader, val_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=args.shuffle),\ DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) # t1 = max_sentence_len + 2 * (args.filter_shape - 1) t1 = CONFIG.MAX_SENTENCE_LEN t2 = int(math.floor( (t1 - args.filter_shape) / 2) + 1) # "2" means stride size t3 = int(math.floor((t2 - args.filter_shape) / 2) + 1) args.t3 = t3 embedding = nn.Embedding.from_pretrained( torch.FloatTensor(embedding_model)) text_encoder = text_model.ConvolutionEncoder(embedding, t3, args.filter_size, args.filter_shape, args.latent_size) text_decoder = text_model.DeconvolutionDecoder(embedding, args.tau, t3, args.filter_size, args.filter_shape, args.latent_size, device) if args.resume: print("Restart from checkpoint") checkpoint = torch.load(os.path.join(CONFIG.CHECKPOINT_PATH, args.resume), map_location=lambda storage, loc: storage) start_epoch = checkpoint['epoch'] text_encoder.load_state_dict(checkpoint['text_encoder']) text_decoder.load_state_dict(checkpoint['text_decoder']) else: print("Start from initial") start_epoch = 0 text_autoencoder = text_model.TextAutoencoder(text_encoder, text_decoder) criterion = nn.NLLLoss().to(device) text_autoencoder.to(device) optimizer = AdamW(text_autoencoder.parameters(), lr=1., weight_decay=args.weight_decay, amsgrad=True) step_size = args.half_cycle_interval * len(train_loader) clr = cyclical_lr(step_size, min_lr=args.lr, max_lr=args.lr * args.lr_factor) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, [clr]) if args.resume: optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) exp = Experiment("Text autoencoder " + str(args.latent_size), capture_io=False) for arg, value in vars(args).items(): exp.param(arg, value) try: text_autoencoder.train() for epoch in range(start_epoch, args.epochs): print("Epoch: {}".format(epoch)) for steps, batch in enumerate(train_loader): torch.cuda.empty_cache() feature = Variable(batch).to(device) optimizer.zero_grad() prob = text_autoencoder(feature) loss = criterion(prob.transpose(1, 2), feature) loss.backward() optimizer.step() scheduler.step() if (steps * args.batch_size) % args.log_interval == 0: input_data = feature[0] single_data = prob[0] _, predict_index = torch.max(single_data, 1) input_sentence = util.transform_idx2word( input_data.detach().cpu().numpy(), idx2word=word_idx[0]) predict_sentence = util.transform_idx2word( predict_index.detach().cpu().numpy(), idx2word=word_idx[0]) print("Epoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) print("Steps: {}".format(steps)) print("Loss: {}".format(loss.detach().item())) print("Input Sentence:") print(input_sentence) print("Output Sentence:") print(predict_sentence) del input_data, single_data, _, predict_index del feature, prob, loss exp.log("\nEpoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) _avg_loss, _rouge_1, _rouge_2 = eval_reconstruction_with_rouge( text_autoencoder, word_idx[0], criterion, val_loader, device) exp.log("\nEvaluation - loss: {} Rouge1: {} Rouge2: {}".format( _avg_loss, _rouge_1, _rouge_2)) util.save_models( { 'epoch': epoch + 1, 'text_encoder': text_encoder.state_dict(), 'text_decoder': text_decoder.state_dict(), 'avg_loss': _avg_loss, 'Rouge1:': _rouge_1, 'Rouge2': _rouge_2, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, CONFIG.CHECKPOINT_PATH, "text_autoencoder_" + str(args.latent_size)) print("Finish!!!") finally: exp.end()
def train_reconstruction(args): device = torch.device(args.gpu) print("Loading dataset...") train_dataset, val_dataset = load_image_pretrain_data(args, CONFIG) print("Loading dataset completed") train_loader, val_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=args.shuffle),\ DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True) # image_encoder = ImageEncoder() # image_encoder.init_weights() # image_decoder = ImageDecoder() image_encoder = ResNet50Encoder() image_encoder.init_weights() image_decoder = ResNet50Decoder() if args.resume: print("Restart from checkpoint") checkpoint = torch.load(os.path.join(CONFIG.CHECKPOINT_PATH, args.resume), map_location=lambda storage, loc: storage) start_epoch = checkpoint['epoch'] image_encoder.load_state_dict(checkpoint['image_encoder']) image_decoder.load_state_dict(checkpoint['image_decoder']) else: print("Start from initial") start_epoch = 0 image_autoencoder = ResNet_autoencoder(image_encoder, image_decoder) criterion = nn.MSELoss().to(device) image_autoencoder.to(device) optimizer = AdamW(image_autoencoder.parameters(), lr=1., weight_decay=args.weight_decay, amsgrad=True) step_size = args.half_cycle_interval * len(train_loader) clr = cyclical_lr(step_size, min_lr=args.lr, max_lr=args.lr * args.lr_factor) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, [clr]) if args.resume: optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) exp = Experiment("Image-sequence Component Pretrain " + str(args.latent_size), capture_io=False) for arg, value in vars(args).items(): exp.param(arg, value) try: image_autoencoder.train() for epoch in range(start_epoch, args.epochs): print("Epoch: {}".format(epoch)) for steps, batch in enumerate(train_loader): torch.cuda.empty_cache() feature = Variable(batch).to(device) optimizer.zero_grad() feature_hat = image_autoencoder(feature) loss = criterion(feature_hat, feature) loss.backward() optimizer.step() scheduler.step() if (steps * args.batch_size) % args.log_interval == 0: print("Epoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) print("Steps: {}".format(steps)) print("Loss: {}".format(loss.detach().item())) del feature, feature_hat, loss exp.log("\nEpoch: {} at {} lr: {}".format( epoch, str(datetime.datetime.now()), str(scheduler.get_lr()))) _avg_loss = eval_reconstruction(image_autoencoder, criterion, val_loader, device, epoch) exp.log("\nEvaluation - loss: {}".format(_avg_loss)) util.save_models( { 'epoch': epoch + 1, 'image_encoder': image_encoder.state_dict(), 'image_decoder': image_decoder.state_dict(), 'avg_loss': _avg_loss, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, CONFIG.CHECKPOINT_PATH, "image_pretrain" + str(args.latent_size)) print("Finish!!!") finally: exp.end()