示例#1
0
    classes_path = 'data/coco_classes.txt'
    # model_path可以是'yolov4.h5'、'./weights/step00001000.h5'这些。
    # model_path = 'yolov4.h5'
    model_path = './weights/step00001000.h5'

    # input_shape越大,精度会上升,但速度会下降。
    # input_shape = (320, 320)
    input_shape = (416, 416)
    # input_shape = (608, 608)

    num_anchors = 3
    all_classes = get_classes(classes_path)
    num_classes = len(all_classes)
    inputs = layers.Input(shape=(None, None, 3))
    yolo = YOLOv4(inputs, num_classes, num_anchors)
    yolo.load_weights(model_path, by_name=True)

    _decode = Decode(0.05, 0.45, input_shape, yolo, all_classes)

    # detect images in test floder.
    for (root, dirs, files) in os.walk('images/test'):
        if files:
            start = time.time()
            for f in files:
                path = os.path.join(root, f)
                image = cv2.imread(path)
                image, boxes, scores, classes = _decode.detect_image(
                    image, draw_image=True)
                cv2.imwrite('images/res/' + f, image)
            print('total time: {0:.6f}s'.format(time.time() - start))
示例#2
0
from model.decode_np import Decode

if __name__ == '__main__':
    file = 'data/coco_classes.txt'
    model_path = 'yolo_bgr_mAP_46.h5'

    # input_shape越大,精度会上升,但速度会下降。
    # input_shape = (320, 320)
    input_shape = (416, 416)
    # input_shape = (608, 608)

    _decode = Decode(0.6, 0.5, input_shape, model_path, file)

    # detect images in test floder.
    for (root, dirs, files) in os.walk('images/test'):
        if files:
            start = time.time()
            for f in files:
                # print(f)
                path = os.path.join(root, f)
                image = cv2.imread(path)
                image = _decode.detect_image(image)
                cv2.imwrite('images/res/' + f, image)
            print('total time: {0:.6f}s'.format(time.time() - start))

    # detect videos one at a time in videos/test folder
    # video = 'library1.mp4'
    # _decode.detect_video(video)

示例#3
0
            if cv2.waitKey(1) == ord('q'):
                capture.release()
                cv2.destroyWindow("screen_title2")


t1 = threading.Thread(target=job1)
#t2 = threading.Thread(target = job2)
t1.start()
#t2.start()
while True:
    if a > 0:

        bgr_image = frame1
        gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
        rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
        faces = face_detector.detect_image(bgr_image)[1]

        if faces is None:
            faces = ()
        for face_coordinates in faces:
            x1, y1, x2, y2 = face_coordinates
            face_coordinates = [int(x1), int(y1), int(x2 - x1), int(y2 - y1)]
            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]
            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
示例#4
0
    if torch.cuda.is_available():  # 如果有gpu可用,模型(包括了权重weight)存放在gpu显存里
        yolo = yolo.cuda()
    yolo.load_state_dict(torch.load(model_path))
    yolo.eval(
    )  # 必须调用model.eval()来设置dropout和batch normalization layers在运行推理前,切换到评估模式. 不这样做的化会产生不一致的推理结果.

    _decode = Decode(conf_thresh, nms_thresh, input_shape, yolo, all_classes)

    if not os.path.exists('images/res/'): os.mkdir('images/res/')

    path_dir = os.listdir('images/test')
    # warm up
    if use_gpu:
        for k, filename in enumerate(path_dir):
            image = cv2.imread('images/test/' + filename)
            image, boxes, scores, classes = _decode.detect_image(
                image, draw_image=False)
            if k == 10:
                break

    time_stat = deque(maxlen=20)
    start_time = time.time()
    end_time = time.time()
    num_imgs = len(path_dir)
    start = time.time()
    for k, filename in enumerate(path_dir):
        image = cv2.imread('images/test/' + filename)
        image, boxes, scores, classes = _decode.detect_image(image, draw_image)

        # 估计剩余时间
        start_time = end_time
        end_time = time.time()
示例#5
0
    place = fluid.CUDAPlace(gpu_id) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    fluid.load(eval_prog, model_path, executor=exe)
    _decode = Decode(conf_thresh, nms_thresh, input_shape, exe, eval_prog,
                     all_classes)

    if not os.path.exists('images/res/'): os.mkdir('images/res/')

    path_dir = os.listdir('images/test')
    # warm up
    if use_gpu:
        for k, filename in enumerate(path_dir):
            image = cv2.imread('images/test/' + filename)
            image, boxes, scores, classes = _decode.detect_image(
                image, eval_fetch_list, draw_image=False)
            if k == 10:
                break

    time_stat = deque(maxlen=20)
    start_time = time.time()
    end_time = time.time()
    num_imgs = len(path_dir)
    start = time.time()
    for k, filename in enumerate(path_dir):
        image = cv2.imread('images/test/' + filename)
        image, boxes, scores, classes = _decode.detect_image(
            image, eval_fetch_list, draw_image)

        # 估计剩余时间
        start_time = end_time
class face_detect():
    def __init__(self):
        # hyper-parameters for bounding boxes shape
        self.frame_window = 10
        self.emotion_offsets = (20, 40)

        # loading models
        self.face_detector = Decode('data/voc_classes.txt',
                                    './weights/best_model.h5')
        self.emotion_classifier = load_model(
            'model/fer2013_mini_XCEPTION.102-0.66.hdf5', compile=False)
        self.emotion_labels = get_labels('fer2013')

        # getting input model shapes for inference
        self.emotion_target_size = self.emotion_classifier.input_shape[1:3]

        # starting lists for calculating modes
        self.emotion_window = []

    def faceDetect(self, bgr_image):
        faces = self.face_detector.detect_image(bgr_image)[1]
        probability = [0, 0, 0, 0, 0, 0, 0]
        if faces is not None and len(faces) == 1:
            bgr_image, probability = self.emo_Detect(bgr_image, faces[0])
        return bgr_image, probability

    def emo_Detect(self, bgr_image, face_coordinates):

        gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)

        x1, y1, x2, y2 = face_coordinates
        face_coordinates = [int(x1), int(y1), int(x2 - x1), int(y2 - y1)]
        x1, x2, y1, y2 = apply_offsets(face_coordinates, self.emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        gray_face = cv2.resize(gray_face, (self.emotion_target_size))

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_prediction = self.emotion_classifier.predict(gray_face)
        for idx, probability in enumerate(emotion_prediction[0]):
            print(self.emotion_labels[idx], probability)
        emotion_probability = np.max(emotion_prediction)
        emotion_label_arg = np.argmax(emotion_prediction)
        emotion_text = self.emotion_labels[emotion_label_arg]
        self.emotion_window.append(emotion_text)

        if len(self.emotion_window) > self.frame_window:
            self.emotion_window.pop(0)
        try:
            emotion_mode = mode(self.emotion_window)
            print("mode is " + emotion_mode)
        except:
            pass

        if emotion_text == 'angry':
            color = emotion_probability * np.asarray((0, 0, 255))
        elif emotion_text == 'sad':
            color = emotion_probability * np.asarray((255, 0, 0))
        elif emotion_text == 'happy':
            color = emotion_probability * np.asarray((0, 255, 255))
        elif emotion_text == 'surprise':
            color = emotion_probability * np.asarray((255, 255, 0))
        else:
            color = emotion_probability * np.asarray((0, 255, 0))

        color = color.astype(int)
        color = color.tolist()

        draw_bounding_box(face_coordinates, bgr_image, color)
        draw_text(face_coordinates, bgr_image, emotion_text, color, 0, -45, 1,
                  1)

        return bgr_image, emotion_prediction[0]
示例#7
0
    key_list = list(test_dic.keys())
    key_len = len(key_list)
    while key_len == 0:
        time.sleep(0.01)
        key_list = list(test_dic.keys())
        key_len = len(key_list)
    dic = test_dic['%.8d' % 0]
    image = dic['image']
    pimage = dic['pimage']
    im_info = dic['im_info']


    # warm up
    if use_gpu:
        for k in range(10):
            image, boxes, scores, classes = _decode.detect_image(image, pimage, im_info, draw_image=False)


    time_stat = deque(maxlen=20)
    start_time = time.time()
    end_time = time.time()
    num_imgs = len(path_dir)
    start = time.time()
    for k, filename in enumerate(path_dir):
        key_list = list(test_dic.keys())
        key_len = len(key_list)
        while key_len == 0:
            time.sleep(0.01)
            key_list = list(test_dic.keys())
            key_len = len(key_list)
        dic = test_dic.pop('%.8d' % k)
示例#8
0
def job1():
    global count1
    global frame    
    
    use_gpu = True
        # 显存分配。
    if use_gpu:
        os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    else:
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    from keras.backend.tensorflow_backend import set_session
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.8
    set_session(tf.Session(config=config))

    facesDetect = {'classes_path': 'data/voc_classes.txt', 'model_path': './weights/best_model.h5'}
    emotion_model_path = 'model/fer2013_mini_XCEPTION.102-0.66.hdf5'
    emotion_labels = get_labels('fer2013')

    # hyper-parameters for bounding boxes shape
    frame_window = 10
    emotion_offsets = (20, 40)

    # loading models
    face_detector = Decode(facesDetect['classes_path'], facesDetect['model_path'])
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    emotion_window1 = []
    record1 = {'angry':[0], 'disgust':[0], 'fear':[0], 'happy':[0], 'sad':[0], 'surprise':[0], 'neutral':[0]}
    #record_diff = {'angry':[], 'disgust':[], 'fear':[], 'happy':[], 'sad':[], 'surprise':[], 'neutral':[]}'''
    emo_record1 = []
    capture = cv2.VideoCapture(0)
    while True:
        
        if True:
            bgr_image = capture.read()[1]
            gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
            rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
            faces = face_detector.detect_image(bgr_image)[1]
            if faces is None:
                faces = ()
            # print(faces)

            for face_coordinates in faces:
                x1, y1, x2, y2 = face_coordinates
                face_coordinates = [int(x1), int(y1), int(x2-x1), int(y2-y1)]
                x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
                gray_face = gray_image[y1:y2, x1:x2]
                try:
                    gray_face = cv2.resize(gray_face, (emotion_target_size))
                except:
                    continue

                gray_face = preprocess_input(gray_face, True)
                gray_face = np.expand_dims(gray_face, 0)
                gray_face = np.expand_dims(gray_face, -1)
                emotion_prediction = emotion_classifier.predict(gray_face)
                ###############移動平均公式################
                '''for idx, probability in enumerate(emotion_prediction[0]):
                    alpha = 0.5
                    record[emotion_labels[idx]].append(record[emotion_labels[idx]][-1] + alpha * (round(probability*100, 2)-record[emotion_labels[idx]][-1]))
                    emotion_prediction[0][idx] = record[emotion_labels[idx]][-1]
                    if len(record[emotion_labels[idx]])>10:
                        record[emotion_labels[idx]].pop(0)
                    #print(record)
                #print()'''
                #########################################

                
                #################自創權重##############
                emotion_prediction[0] = weights_change(emo_record1, emotion_prediction[0])
                data=[]
                for idx, probability in enumerate(emotion_prediction[0]):
                    data.append((emotion_labels[idx],  probability))
                rd1.append(data)
                count1+=1
                emo_record1.append(np.argmax(emotion_prediction))
                if len(emo_record1)>10:
                    emo_record1.pop(0)
                #######################################
                    
                emotion_probability = np.max(emotion_prediction)
                emotion_label_arg = np.argmax(emotion_prediction)
                emotion_text = emotion_labels[emotion_label_arg]
                emotion_window1.append(emotion_text)
                
            
            
                
                if len(emotion_window1) > frame_window:
                    emotion_window1.pop(0)
                try:
                    emotion_mode1 = mode(emotion_window1)
                except:
                    continue

                if emotion_text == 'angry':
                    color = emotion_probability * np.asarray((255, 0, 0))
                elif emotion_text == 'sad':
                    color = emotion_probability * np.asarray((0, 0, 255))
                elif emotion_text == 'happy':
                    color = emotion_probability * np.asarray((255, 255, 0))
                elif emotion_text == 'surprise':
                    color = emotion_probability * np.asarray((0, 255, 255))
                else:
                    color = emotion_probability * np.asarray((0, 255, 0))

                color = color.astype(int)
                color = color.tolist()

                draw_bounding_box(face_coordinates, rgb_image, color)
                draw_text(face_coordinates, rgb_image, emotion_mode1,
                        color, 0, -45, 1, 1)

            bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
            cv2.imshow('window_frame1', bgr_image)
            if cv2.waitKey(1) & 0xFF == 27:
                break
    cv2.destroyAllWindows()
    if not os.path.exists('images/res/'): os.mkdir('images/res/')
    path_dir = os.listdir('images/test')

    capture = cv2.VideoCapture(video_path)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video_name = os.path.split(video_path)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    start = time.time()
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1

        pimage, im_size = _decode.process_image(np.copy(frame))
        image, boxes, scores, classes = _decode.detect_image(
            frame, pimage, im_size, draw_image, draw_thresh)

        cv2.imshow("detection", frame)
        writer.write(frame)
        if cv2.waitKey(110) & 0xff == 27:
            break
    writer.release()