load_name = os.path.join( input_dir, 'thundernet_epoch_{}.pth'.format(args.checkepoch, )) device = torch.device("cuda" if args.cuda > 0 else "cpu") pascal_classes = np.asarray([ '__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]) layer = int(args.net.split("_")[1]) _RCNN = snet(pascal_classes, layer, pretrained_path=None, class_agnostic=args.class_agnostic) _RCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda > 0: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=(lambda storage, loc: storage)) _RCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!')
# make variable im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True # initilize the network here. layer = int(args.net.split("_")[1]) print(imdb.classes) _RCNN = snet( imdb.classes, layer, pretrained_path=args.pre, class_agnostic=args.class_agnostic, ) _RCNN.create_architecture() lr = cfg.TRAIN.LEARNING_RATE # tr_momentum = cfg.TRAIN.MOMENTUM # tr_momentum = args.momentum params = [] for key, value in dict(_RCNN.named_parameters()).items(): if value.requires_grad: if 'bias' in key: params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
imdb.competition_mode(on=True) print('{:d} roidb entries'.format(len(roidb))) input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception( 'There is no input directory for loading network from ' + input_dir) load_name = os.path.join( input_dir, 'thundernet_epoch_{}.pth'.format(args.checkepoch, )) layer = int(args.net.split("_")[1]) _RCNN = snet(imdb.classes, layer, pretrained=False, class_agnostic=args.class_agnostic) _RCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage ) # Load all tensors onto the CPU _RCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode']
def eval_result(args, logger, epoch, output_dir): if torch.cuda.is_available() and not args.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) args.batch_size = 1 imdb, roidb, ratio_list, ratio_index = combined_roidb( args.imdbval_name, False) imdb.competition_mode(on=True) load_name = os.path.join(output_dir, 'thundernet_epoch_{}.pth'.format(epoch, )) layer = int(args.net.split("_")[1]) _RCNN = snet(imdb.classes, layer, pretrained_path=None, class_agnostic=args.class_agnostic) _RCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage ) # Load all tensors onto the CPU _RCNN.load_state_dict(checkpoint['model']) im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # hm = torch.FloatTensor(1) # reg_mask = torch.LongTensor(1) # wh = torch.FloatTensor(1) # offset = torch.FloatTensor(1) # ind = torch.LongTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # hm = hm.cuda() # reg_mask = reg_mask.cuda() # wh = wh.cuda() # offset = offset.cuda() # ind = ind.cuda() # make variable with torch.no_grad(): im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) # hm = Variable(hm) # reg_mask = Variable(reg_mask) # wh = Variable(wh) # offset = Variable(offset) # ind = Variable(ind) if args.cuda: cfg.CUDA = True if args.cuda: _RCNN.cuda() start = time.time() max_per_image = 100 vis = True if vis: thresh = 0.05 else: thresh = 0.0 save_name = 'thundernet' num_images = len(imdb.image_index) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] output_dir = get_output_dir(imdb, save_name) # dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \ # imdb.num_classes, training=False, normalize=False) # dataset = roibatchLoader(roidb, imdb.num_classes, training=False) dataset = Detection(roidb, num_classes=imdb.num_classes, transform=BaseTransform(cfg.TEST.SIZE, cfg.PIXEL_MEANS), training=False) dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) data_iter = iter(dataloader) _t = {'im_detect': time.time(), 'misc': time.time()} det_file = os.path.join(output_dir, 'detections.pkl') _RCNN.eval() empty_array = np.transpose(np.array([[], [], [], [], []]), (1, 0)) for i in range(num_images): data = next(data_iter) with torch.no_grad(): im_data.resize_(data[0].size()).copy_(data[0]) im_info.resize_(data[1].size()).copy_(data[1]) gt_boxes.resize_(data[2].size()).copy_(data[2]) num_boxes.resize_(data[3].size()).copy_(data[3]) # hm.resize_(data[4].size()).copy_(data[4]) # reg_mask.resize_(data[5].size()).copy_(data[5]) # wh.resize_(data[6].size()).copy_(data[6]) # offset.resize_(data[7].size()).copy_(data[7]) # ind.resize_(data[8].size()).copy_(data[8]) det_tic = time.time() with torch.no_grad(): time_measure, \ rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label = _RCNN(im_data, im_info, gt_boxes, num_boxes, # hm,reg_mask,wh,offset,ind ) scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(args.batch_size, -1, 4) else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(args.batch_size, -1, 4 * len(imdb.classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) # pred_boxes /= data[1][0][2].item() pred_boxes[:, :, 0::2] /= data[1][0][2].item() pred_boxes[:, :, 1::2] /= data[1][0][3].item() scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() if vis: im = cv2.imread(imdb.image_path_at(i)) im2show = np.copy(im) for j in xrange(1, imdb.num_classes): inds = torch.nonzero(scores[:, j] > thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_boxes[order, :], cls_scores[order], cfg.TEST.NMS) # keep = soft_nms(cls_dets.cpu().numpy(), Nt=0.5, method=2) # keep = torch.as_tensor(keep, dtype=torch.long) cls_dets = cls_dets[keep.view(-1).long()] if vis: vis_detections(im2show, imdb.classes[j], color_list[j - 1].tolist(), cls_dets.cpu().numpy(), 0.6) all_boxes[j][i] = cls_dets.cpu().numpy() else: all_boxes[j][i] = empty_array # Limit to max_per_image detections *over all classes* if max_per_image > 0: image_scores = np.hstack( [all_boxes[j][i][:, -1] for j in xrange(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in xrange(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] misc_toc = time.time() nms_time = misc_toc - misc_tic sys.stdout.write( 'im_detect: {:d}/{:d}\tDetect: {:.3f}s (RPN: {:.3f}s, Pre-RoI: {:.3f}s, RoI: {:.3f}s, Subnet: {:.3f}s)\tNMS: {:.3f}s\r' \ .format(i + 1, num_images, detect_time, time_measure[0], time_measure[1], time_measure[2], time_measure[3], nms_time)) sys.stdout.flush() if vis and i % 200 == 0 and args.use_tfboard: im2show = im2show[:, :, ::-1] logger.add_image('pred_image_{}'.format(i), trans.ToTensor()(Image.fromarray( im2show.astype('uint8'))), global_step=i) # cv2.imwrite('result.png', im2show) # pdb.set_trace() # cv2.imshow('test', im2show) # cv2.waitKey(0) with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') ap_50 = imdb.evaluate_detections(all_boxes, output_dir) logger.add_scalar("map_50", ap_50, global_step=epoch) end = time.time() print("test time: %0.4fs" % (end - start))
input_dir) load_name = os.path.join( input_dir, 'thundernet_epoch_{}.pth'.format(args.checkepoch, )) device = torch.device("cuda" if args.cuda > 0 else "cpu") pascal_classes = np.asarray([ '__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]) _RCNN = snet(pascal_classes, pretrained=False, class_agnostic=args.class_agnostic) _RCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda > 0: checkpoint = torch.load(load_name) else: checkpoint = torch.load(load_name, map_location=(lambda storage, loc: storage)) _RCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!')