示例#1
0
  def __init__(self, classes, num_layers=101, pretrained=False, class_agnostic=False):
    self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
    self.dout_base_model = 1024
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic

    _fasterRCNN.__init__(self, classes, class_agnostic)
示例#2
0
  def __init__(self, classes, pretrained=False, class_agnostic=False):
    self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
    self.dout_base_model = 512
    self.pretrained = pretrained
    self.class_agnostic = class_agnostic

    _fasterRCNN.__init__(self, classes, class_agnostic)
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False):
        self.model_path = 'data/pretrained_model/resnet' + str(
            num_layers) + '_caffe.pth'
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#4
0
    def __init__(self,
                 classes,
                 arch,
                 pretrained=False,
                 class_agnostic=False,
                 imagenet_weight=None):
        self.dout_base_model = dout_base_model[arch]
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.arch = arch
        self.imagenet_weight = imagenet_weight

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#5
0
 def __init__(self,
              classes,
              pretrained=False,
              class_agnostic=False,
              teaching=False):
     self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
     self.dout_base_model = 512
     self.pretrained = pretrained
     self.class_agnostic = class_agnostic
     self.teaching = teaching
     pooling_size = 7
     _fasterRCNN.__init__(self, classes, class_agnostic, pooling_size,
                          teaching)
示例#6
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 K=-1):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.K = K  # if K > 1, transform FasterRCNN to take a stack of K images as input

        _fasterRCNN.__init__(self, classes, class_agnostic, K=self.K)
示例#7
0
文件: resnet.py 项目: yuzhms/RPNSD
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 freeze=False,
                 set_bn_fix=False,
                 embed_size=128):
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.freeze, self.set_bn_fix = freeze, set_bn_fix
        self.embed_size = embed_size

        _fasterRCNN.__init__(self, classes, True)
示例#8
0
 def __init__(self,
              classes,
              num_layers=169,
              pretrained=False,
              class_agnostic=False,
              imagenet_weight=None):
     self.dout_base_model = dout_base_model[
         num_layers]  # depth of RCNN_base output. pattern1=1280 / pattern2=640 (in dense169)
     self.pretrained = pretrained
     self.class_agnostic = class_agnostic
     self.num_layers = num_layers
     self.imagenet_weight = imagenet_weight
     _fasterRCNN.__init__(self, classes, class_agnostic)
示例#9
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 pretrained_model=""):
        self.model_path = pretrained_model
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#10
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 rpn_type='normal'):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.rpn_type = rpn_type

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#11
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 shrink=1,
                 mimic=False):
        self.shrink = shrink
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.dout_base_model = 768 // shrink

        _fasterRCNN.__init__(self, classes, class_agnostic, shrink, mimic)
示例#12
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 imagenet_weight=None):
        self.dout_base_model = dout_base_model[num_layers]
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers
        self.imagenet_weight = imagenet_weight

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#13
0
    def __init__(self,
                 action_classes,
                 obj_classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        # self.model_path = 'data/pretrained_model/faster_rcnn_1_7_10021.pth'
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        _fasterRCNN.__init__(self, action_classes, obj_classes, class_agnostic)
示例#14
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 layer=101):
        self.layer = layer
        self.model_path = 'data/pretrained_model/resnet{}_caffe.pth'.format(
            self.layer)
        self.dout_base_model = 256 if self.layer in (18, 34) else 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#15
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False):
        self.model_path = os.path.join(
            'data/pretrained_model/',
            'resnet{:d}-caffe.pth'.format(num_layers))
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#16
0
    def __init__(self,
                 classes,
                 pretrained=False,
                 class_agnostic=False,
                 is_apn=False):
        self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
        self.dout_base_model = 512
        #self.mv_stride = 16
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        #self.is_apn = is_apn

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#17
0
    def __init__(self,
                 classes,
                 num_layers,
                 pretrained=False,
                 class_agnostic=False,
                 imagenet_weight=None):
        # self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        self.dout_base_model = dout_base_model[num_layers]
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers
        self.imagenet_weight = imagenet_weight

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#18
0
    def __init__(self,
                 classes,
                 ver='10',
                 pretrained=False,
                 class_agnostic=False,
                 imagenet_weight=None):
        # dim of output from RCNN_base block
        self.dout_base_model = dout_base_model[ver]
        self.ver = ver
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.imagenet_weight = imagenet_weight

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#19
0
    def __init__(self,
                 classes,
                 pretrained=False,
                 class_agnostic=False,
                 is_deconv=False,
                 num_filters=32):
        self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
        self.dout_base_model = 512
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.is_deconv = is_deconv
        self.num_filters = num_filters

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#20
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 pair_prob=None,
                 attr_prob=None):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.pair_prob = pair_prob
        self.attr_prob = attr_prob

        _fasterRCNN.__init__(self, classes, class_agnostic)
    def __init__(self,
                 classes,
                 pretrained=False,
                 class_agnostic=False,
                 modal="rgb",
                 model_path="data/pretrained_model/vgg16_caffe.pth"):
        #model_path="data/pretrained_model/vgg16_caffe.pth"):
        self.model_path = model_path
        self.dout_base_model = 512
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        #单双通道模态
        self.modal = modal

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#22
0
    def __init__(self,
                 classes,
                 num_layers=16,
                 pretrained=False,
                 class_agnostic=False,
                 imagenet_weight=None):
        # self.model_path = 'data/pretrained_model/vgg16_caffe.pth'
        self.dout_base_model = dout_base_model[
            num_layers]  # dim of output from RCNN_base block
        self.num_layers = num_layers
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.imagenet_weight = imagenet_weight

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#23
0
    def __init__(self,
                 classes,
                 pretrained=False,
                 class_agnostic=False,
                 lighthead=True):
        self.dout_base_model = 576  # Output channel at Stage4
        self.dout_lh_base_model = 576
        self.class_agnostic = class_agnostic
        self.pretrained = pretrained

        _fasterRCNN.__init__(self,
                             classes,
                             class_agnostic,
                             lighthead,
                             compact_mode=True)
示例#24
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False):
        self.num_layers = num_layers
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.classes = classes
        if num_layers >= 50:
            self.dout_base_model = 1024
        else:
            self.dout_base_model = 256

        _fasterRCNN.__init__(self, self.classes, self.class_agnostic)
示例#25
0
 def __init__(self,
              classes,
              pretrained=False,
              class_agnostic=False,
              teaching=False):
     self.dout_base_model = 256
     self.model_path = 'data/pretrained_model/alexnet_torch.pth'
     self.pretrained = pretrained
     self.class_agnostic = class_agnostic
     self.teaching = teaching
     # todo parametrizzare
     self.n_frozen_layers = 10
     print("N_Frozen_layers: " + str(self.n_frozen_layers))
     pooling_size = 6
     _fasterRCNN.__init__(self, classes, class_agnostic, pooling_size,
                          teaching)
示例#26
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        print("res101")

        #self.dout_base_model = 1024
        #lhy
        self.dout_base_model = 1280

        self.pretrained = pretrained
        self.class_agnostic = class_agnostic

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#27
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 model_path=None,
                 pretrained=False,
                 class_agnostic=False):
        if model_path is None:
            self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        else:
            self.model_path = model_path
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers

        _fasterRCNN.__init__(self, classes, class_agnostic)
 def __init__(self,
              classes,
              net,
              num_layers=101,
              pretrained=False,
              class_agnostic=False):
     self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
     if net == 'res18_3d':
         self.dout_base_model = 256
     else:
         self.dout_base_model = 1024
     self.pretrained = pretrained
     self.class_agnostic = class_agnostic
     if net == 'res18_3d':
         _fasterRCNN3d.__init__(self, classes, class_agnostic)
     else:
         _fasterRCNN.__init__(self, classes, class_agnostic)
示例#29
0
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 pretrained_path=''):
        self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
        if num_layers != 18:
            self.dout_base_model = 1024
        else:
            self.dout_base_model = 256
        self.pretrained = pretrained
        self.class_agnostic = class_agnostic
        self.num_layers = num_layers
        self.pretrained_path = pretrained_path

        _fasterRCNN.__init__(self, classes, class_agnostic)
示例#30
0
 def __init__(self,
              classes,
              num_layers=50,
              relation_module=False,
              pretrained=False,
              class_agnostic=False):
     self.dout_base_model = 1024
     self.pretrained = pretrained,
     self.class_agnostic = class_agnostic
     self.relation_module = relation_module
     _fasterRCNN.__init__(self,
                          classes,
                          class_agnostic,
                          relation_module=relation_module)
     self.fc_dim = 16
     self.emb_ft_dim = 64
     self.relation_output_dim = 2048
示例#31
0
文件: resnet.py 项目: Natlem/M-HTCN
    def __init__(self,
                 classes,
                 num_layers=101,
                 pretrained=False,
                 class_agnostic=False,
                 **kwargs):
        self.model_path = cfg.RESNET_PATH
        self.dout_base_model = 1024
        self.pretrained = pretrained
        self.layers = num_layers
        self.class_agnostic = class_agnostic
        if self.layers == 50:
            self.model_path = cfg.RESNET50_PATH
        if self.layers == 152:
            self.model_path = cfg.RESNET152_PATH

        _fasterRCNN.__init__(self, classes, class_agnostic)
    def __init__(
        self,
        classes,
        layer,
        pretrained_path=None,
        class_agnostic=False,
    ):
        self.pretrained_path = pretrained_path

        self.class_agnostic = class_agnostic

        self.dout_base_model = 256
        self.layer = layer

        self.dout_lh_base_model = 245

        _fasterRCNN.__init__(self, classes, class_agnostic, compact_mode=True)