def evaluate(): """Run Eval once. """ # get a list of image filenames filenames = glb('/data/fluid_flow_steady_state_128x128_test/*') filenames.sort(key=alphanum_key) filename_len = len(filenames) shape = [128, 256] with tf.Graph().as_default(): # Make image placeholder boundary_op = tf.placeholder(tf.float32, [1, shape[0], shape[1], 1]) # Build a Graph that computes the logits predictions from the # inference model. sflow_p = flow_net.inference(boundary_op, 1.0) # Restore the moving average version of the learned variables for eval. variables_to_restore = tf.all_variables() saver = tf.train.Saver(variables_to_restore) sess = tf.Session() ckpt = tf.train.get_checkpoint_state(TEST_DIR) saver.restore(sess, ckpt.model_checkpoint_path) global_step = 1 graph_def = tf.get_default_graph().as_graph_def(add_shapes=True) for run in filenames: # read in boundary flow_name = run + '/fluid_flow_0002.h5' boundary_np = load_boundary(flow_name, shape).reshape( [1, shape[0], shape[1], 1]) sflow_true = load_flow(flow_name, shape) # calc logits sflow_generated = sess.run(sflow_p, feed_dict={boundary_op: boundary_np})[0] if FLAGS.display_test: # convert to display sflow_plot = np.concatenate([ sflow_true, sflow_generated, sflow_true - sflow_generated ], axis=1) boundary_concat = np.concatenate(3 * [boundary_np], axis=2) sflow_plot = np.sqrt( np.square(sflow_plot[:, :, 0]) + np.square(sflow_plot[:, :, 1]) ) - .05 * boundary_concat[0, :, :, 0] # display it plt.imshow(sflow_plot) plt.colorbar() plt.show() print("the percent error on " + FLAGS.test_set + " is") print(p_error)
def evaluate(): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ shape = [128, 256] with tf.Graph().as_default(): # Make image placeholder boundary_op = tf.placeholder(tf.float32, [8, shape[0], shape[1], 1]) # Build a Graph that computes the logits predictions from the # inference model. sflow_p = flow_net.inference(boundary_op, 1.0) # Restore the moving average version of the learned variables for eval. variables_to_restore = tf.all_variables() saver = tf.train.Saver(variables_to_restore) sess = tf.Session() ckpt = tf.train.get_checkpoint_state(TEST_DIR) saver.restore(sess, ckpt.model_checkpoint_path) global_step = 1 graph_def = tf.get_default_graph().as_graph_def(add_shapes=True) num_runs = 1000 boundary_np = np.zeros([8, shape[0], shape[1], 1]) _ = sess.run(sflow_p, feed_dict={boundary_op: boundary_np})[0] t = time.time() for i in xrange(num_runs): # make boundary # calc logits _ = sess.run(sflow_p, feed_dict={boundary_op: boundary_np})[0] elapsed = time.time() - t print("time per inpu is ") print(elapsed / (num_runs * 8.))
def train(): """Train ring_net for a number of steps.""" with tf.Graph().as_default(): # make inputs boundary, sflow = flow_net.inputs(FLAGS.batch_size) # create and unrap network sflow_p = flow_net.inference(boundary, FLAGS.keep_prob) # calc error error = flow_net.loss_image(sflow_p, sflow) # train hopefuly train_op = flow_net.train(error, FLAGS.learning_rate) # List of all Variables variables = tf.global_variables() # Build a saver saver = tf.train.Saver(tf.global_variables()) #for i, variable in enumerate(variables): # print '----------------------------------------------' # print variable.name[:variable.name.index(':')] # Summary op summary_op = tf.summary.merge_all() # Build an initialization operation to run below. init = tf.global_variables_initializer() # Start running operations on the Graph. sess = tf.Session() # init if this is the very time training sess.run(init) # init from checkpoint saver_restore = tf.train.Saver(variables) ckpt = tf.train.get_checkpoint_state(TRAIN_DIR) if ckpt is not None: print("init from " + TRAIN_DIR) try: saver_restore.restore(sess, ckpt.model_checkpoint_path) except: tf.gfile.DeleteRecursively(TRAIN_DIR) tf.gfile.MakeDirs(TRAIN_DIR) print("there was a problem using variables in checkpoint, random init will be used instead") # Start que runner tf.train.start_queue_runners(sess=sess) # Summary op graph_def = sess.graph.as_graph_def(add_shapes=True) summary_writer = tf.summary.FileWriter(TRAIN_DIR, graph_def=graph_def) for step in range(FLAGS.max_steps): t = time.time() _ , loss_value = sess.run([train_op, error],feed_dict={}) elapsed = time.time() - t assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step%100 == 0: summary_str = sess.run(summary_op, feed_dict={}) summary_writer.add_summary(summary_str, step) print("loss value at " + str(loss_value)) print("time per batch is " + str(elapsed)) if step%1000 == 0: checkpoint_path = os.path.join(TRAIN_DIR, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) print("saved to " + TRAIN_DIR)