latent_dim=LATENT_DIM, random_sampling=False ) goptim_cfg = OptimConfig('Adam', lr=0.0002) doptim_cfg = OptimConfig('Adam', lr=0.0002) dataset_cfg = DatasetConfig('CelebA', dataset_len=DATASET_LEN, image_size=IMAGE_SIZE, preload_len=PRELOAD_LEN) loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True) gen_cfg = ModelConfig( 'EDCG', input_size=LATENT_DIM, hidden_size=128, output_size=3, data_num=PRELOAD_LEN, out_64=IMAGE_SIZE == 64 ) dis_cfg = ModelConfig('DCD', input_size=3, hidden_size=64, output_size=1, out_64=IMAGE_SIZE == 64) gan_cfg = GanConfig( name='CelebAGAN', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=EPOCHS, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, label_smooth=False, sampler_cfg=sampler_cfg, dist_loss=False, device=device ) gan_schema = GanSchema() gan_desc = gan_schema.dump(gan_cfg) logger.save_cfg(gan_desc) gan = gan_cfg.get() gan.train(use_tqdm=True) gan.save('checkpoints', 'CelebA64')
dataset_cfg = DatasetConfig('MNIST', train=True, stack=False, along_width=False, size=32) loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True) gen_cfg = ModelConfig('EDCG', input_size=LATENT_DIM, hidden_size=128, output_size=1, data_num=DATASET_LEN) dis_cfg = ModelConfig('DCD', input_size=1, hidden_size=128, output_size=1) train_data_cfg = DatasetConfig('MNIST', stack=False, train=True, along_width=False) test_data_cfg = DatasetConfig('MNIST', stack=False, train=False, along_width=False) train_loader = LoaderConfig('naive', batch_size=128, shuffle=True) test_loader = LoaderConfig('naive', batch_size=128, shuffle=True) util_cfg = UtilityModelConfig('NaiveClassifier', False, '/home/bourgan/gan_dev/checkpoints/mnist_naive.pth.tar', 15, train_loader, test_loader, train_data_cfg, test_data_cfg, 32, 'cuda') gan_cfg = GanConfig( name='StackMNISTLPG', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=EPOCHS, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, label_smooth=False, sampler_cfg=sampler_cfg, dist_loss=False, device=device, util_cfg=util_cfg ) gan_schema = GanSchema() gan_desc = gan_schema.dump(gan_cfg) logger.save_cfg(gan_desc) gan = gan_cfg.get() gan.train(use_tqdm=True) gan.save('checkpoints', 'mnist')
loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True) gen_cfg = ModelConfig('MLG', input_size=latent_dim, hidden_size=32, output_size=2) dis_cfg = ModelConfig('MLD', input_size=2, hidden_size=32, output_size=1) gan_cfg = GanConfig(name='LearningPrior2', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=20000, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, label_smooth=False, sampler_cfg=sampler_cfg, dist_loss=False, device=device) gan_schema = GanSchema() gan_desc = gan_schema.dump(gan_cfg) logger.save_cfg(gan_desc) gan = gan_cfg.get() # th.nn.init.normal_(gan.gen.sample_matrix.weight) gan.train(use_tqdm=True)
input_nc=3, output_nc=3, num_downs=6, ngf=64, use_resizeconv=True, ex_label=True, label_len=label_len) dis_cfg = ModelConfig('PatchDis', input_nc=6) gan_cfg = GanConfig(name='Pix2Pix', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=GAN_EPOCHS, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, device=device) gan = gan_cfg.get() gan.load('./p2p/' + EXP_NAME) SAVE_DIR = './eval_result/' + EXP_NAME os.makedirs(SAVE_DIR, exist_ok=True) dirs = gan.eval_on_dataset(SAVE_DIR, label_len=label_len) dirs = [['/'.join(x.split('/')[-2:]) for x in d] for d in dirs]
gen_cfg = ModelConfig('EDCG', input_size=LATENT_DIM, hidden_size=128, output_size=1, data_num=DATASET_LEN) dis_cfg = ModelConfig('DCD', input_size=1, hidden_size=128, output_size=1) gan_cfg = GanConfig(name='MNIST-WGAN-GP', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=EPOCHS, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, label_smooth=False, sampler_cfg=sampler_cfg, dist_loss=False, device=device, LAMBDA=0.1) gan_schema = GanSchema() gan_desc = gan_schema.dump(gan_cfg) logger.save_cfg(gan_desc) gan = gan_cfg.get() gan.train(use_tqdm=True) gan.save('checkpoints', 'mnist')
sampler_cfg = SamplerConfig( name='Gaussian', out_shape=latent_dim, ) goptim_cfg = OptimConfig('Adam', lr=1e-3) doptim_cfg = OptimConfig('Adam', lr=1e-3) dataset_cfg = DatasetConfig('Spiral', mode=mode, sig=1, num_per_mode=dataset_len // mode) # dataset_cfg = DatasetConfig('GMM', mode=mode, sig=1, num_per_mode=dataset_len // mode) loader_cfg = LoaderConfig('naive', batch_size=128, shuffle=True) gen_cfg = ModelConfig('MLG', input_size=latent_dim, hidden_size=32, output_size=2) dis_cfg = ModelConfig('MLD', input_size=2, hidden_size=32, output_size=1) gan_cfg = GanConfig( name='Vanilla', gen_cfg=gen_cfg, dis_cfg=dis_cfg, gen_step=1, dis_step=1, gan_epoch=15000, loader_cfg=loader_cfg, dataset_cfg=dataset_cfg, gloss_cfg=gloss_cfg, dloss_cfg=dloss_cfg, goptim_cfg=goptim_cfg, doptim_cfg=doptim_cfg, label_smooth=False, sampler_cfg=sampler_cfg, device=device ) gan_schema = GanSchema() gan_desc = gan_schema.dump(gan_cfg) logger.save_cfg(gan_desc) gan = gan_cfg.get() gan.train(use_tqdm=True)