示例#1
0
def staggeredPatternType2(lIndX, lIndY, indZ):
    '''return a list of grid ranges that delimit a set of staggered 
    patterned surfaces, i.e. in a floor of a buildin from the following parameters:

    :parameter lIndX: list of X-index that point to the X-coordinates of the strips edges.
    :parameter lIndY: list of Y-index that point to the Y-coordinates of the strips edges.
    :parameter indZ: Z-index that points to the Z-coordinate of all the surfaces

    The first vertex considered is (lIndX[0],lIndY[1],indZ)
    '''
    indSupPatt = []
    for i in range(0, len(lIndX) - 1, 2):
        for j in range(1, len(lIndY) - 1, 2):
            inds = ijkGrid.IJKRange([lIndX[i], lIndY[j], indZ],
                                    [lIndX[i + 1], lIndY[j + 1], indZ])
            indSupPatt.append(inds)
    for i in range(1, len(lIndX) - 1, 2):
        for j in range(0, len(lIndY) - 1, 2):
            inds = ijkGrid.IJKRange([lIndX[i], lIndY[j], indZ],
                                    [lIndX[i + 1], lIndY[j + 1], indZ])
            indSupPatt.append(inds)
    return indSupPatt
示例#2
0
#   elemSize: mean size of the elements
#   vDirLAxZ: direction vector for the element local axis Z
#             defined as xc.Vector([x,y,z]). This is the direction in which
#             the Z local axis of the reinforced concrete sections will be
#             oriented (i.e. in the case of rectangular sections this Z
#             local axis of the RC section is parallel to the dimension
#             defined as width of the rectangle)
#   ranges:   lists of grid ranges to delimit the lines of
#             the type in question

beam = model.newMaterialLine(name='beam',
                             material=matBeam,
                             elemType='ElasticBeam3d',
                             elemSize=eSize,
                             vDirLAxZ=xc.Vector([0, -1, 0]))
beam.ranges = [ijkGrid.IJKRange([0, 0, 0], [2, 0, 0])]

#Dictionary of material-lines
allLinList = [beam]
conjLines = model.setMaterialLinesMap(allLinList)

# Regions resting on springs (Winkler elastic foundation)
#   name:     name to identify the region
#   wModulus: Winkler modulus of the foundation (springs in Z direction)
#   cRoz:     fraction of the Winkler modulus to apply for friction in
#             the contact plane (springs in X, Y directions)
#   ranges:   lists of grid ranges to delimit the regions of
#             the type of foundation in question
# winkMod=20e7
# coefHorVerSprings=0.2
# foundationElasticSupports= model.newElasticFoundationRanges('apElT1', wModulus= winkMod,cRoz=coefHorVerSprings)
示例#3
0
zBottomGlass = HinfColumn + HSupColumn
for i in range(1, int(AnglGlass / AnglIncr) + 1):
    zList.append(zBottomGlass + RGlass * math.sin(i * incrAngRad))

#auxiliary data
lastXpos = len(xList) - 1
lastYpos = len(yList) - 1
lastZpos = len(zList) - 1

# grid of X,Y,Z axes coordinates
rejXYZ = model.setGrid(xList, yList, zList)

#Displacements of the grid points in a range
#syntax: moveRange(ijkGrid.IJKRange([minIindex,minJindex,minKindex],[maxIindex,maxJindex,maxKindex],[dispX,dispY,dispZ])
for k in range(3, lastZpos + 1):
    r = ijkGrid.IJKRange([lastXpos, 0, k], [lastXpos, lastYpos, k])
    deltaXPto = -RGlass * (1 - math.cos((k - 2) * incrAngRad))
    mr = ijkGrid.moveRange(r, [deltaXPto, 0.0, 0.0])
    rejXYZ.rangesToMove.append(mr)

# *** MATERIALS ***
concrete = typical_materials.MaterialData(name='concrete',
                                          E=EcConcr,
                                          nu=cpoisConcr,
                                          rho=densConcr)
#Fictitious material to represent rigid motion
fictMat = typical_materials.MaterialData(name='fictMat',
                                         E=Efict,
                                         nu=cpoisFict,
                                         rho=densFict)
#fictMat.G=GFict
示例#4
0
#  Dictionary of materials
matElMembPlat= model.setMaterials([wallsBasement_mat,facadeShearWall_mat,shearWallStaircase_mat,slabs_mat,sqrColumns_mat])

#Mesh parameters and sets
    # Types of surfaces to be discretized from the defined 
    # material, type of element and size of the elements.
    # Parameters:
    #   name:     name to identify the type of surface
    #   material: name of the material that makes up the surface
    #   elemType: element type to be used in the discretization
    #   elemSize: mean size of the elements
    #   ranges:   lists of grid ranges to delimit the surfaces of 
    #             the type in question
wallBasYmin= model.newMaterialSurface('wallBasYmin', material=wallsBasement_mat, elemType='ShellMITC4',elemSize= eSize)
wallBasYmin.ranges= [ ijkGrid.IJKRange([0,0,0],[lastXind,0,2])]

wallBasYmax= model.newMaterialSurface('wallBasYmax', material=wallsBasement_mat, elemType='ShellMITC4',elemSize= eSize)
wallBasYmax.ranges= [ ijkGrid.IJKRange([0,lastYind,0],[lastXind,lastYind,2])]

wallBasXmin= model.newMaterialSurface('wallBasXmin', material=wallsBasement_mat, elemType='ShellMITC4',elemSize= eSize)
wallBasXmin.ranges= [ ijkGrid.IJKRange([0,0,0],[0,lastYind,2])]

wallBasXmax= model.newMaterialSurface('wallBasXmax', material=wallsBasement_mat, elemType='ShellMITC4',elemSize= eSize)
wallBasXmax.ranges= [ ijkGrid.IJKRange([lastXind,0,0],[lastXind,lastYind,2])]

columnFacYmin= model.newMaterialSurface('columnFacYmin', material=facadeShearWall_mat, elemType='ShellMITC4',elemSize= eSize)
columnFacYmin.ranges= [ ijkGrid.IJKRange([1,1,0],[3,1,lastZind]),ijkGrid.IJKRange([4,1,0],[6,1,lastZind]),ijkGrid.IJKRange([9,1,0],[11,1,lastZind]),ijkGrid.IJKRange([12,1,0],[14,1,lastZind])]

columnFacYmax= model.newMaterialSurface('columnFacYmax', material=facadeShearWall_mat, elemType='ShellMITC4',elemSize= eSize)
columnFacYmax.ranges= [ ijkGrid.IJKRange([1,lastYind,0],[3,lastYind,lastZind]),ijkGrid.IJKRange([4,lastYind,0],[6,lastYind,lastZind]),ijkGrid.IJKRange([9,lastYind,0],[11,lastYind,lastZind]),ijkGrid.IJKRange([12,lastYind,0],[14,lastYind,lastZind])]
示例#5
0
    # Parameters:
    #   name:     name to identify the type of line
    #   material: name of the material that makes up the line
    #   elemType: element type to be used in the discretization
    #   elemSize: mean size of the elements
    #   vDirLAxZ: direction vector for the element local axis Z 
    #             defined as xc.Vector([x,y,z]). This is the direction in which
    #             the Z local axis of the reinforced concrete sections will be
    #             oriented (i.e. in the case of rectangular sections this Z 
    #             local axis of the RC section is parallel to the dimension
    #             defined as width of the rectangle)
    #   ranges:   lists of grid ranges to delimit the lines of 
    #             the type in question

botCol= model.newMaterialLine(name='botCol', material= matBotCol, elemType='ElasticBeam3d',elemSize= eSize,vDirLAxZ=xc.Vector([0,-1,0]))
botCol.ranges= [ ijkGrid.IJKRange([0,0,0],[0,0,1])]

topCol= model.newMaterialLine(name='topCol', material= matTopCol, elemType='ElasticBeam3d',elemSize= eSize,vDirLAxZ=xc.Vector([0,-1,0]))
topCol.ranges= [ ijkGrid.IJKRange([0,0,1],[0,0,2])]
glsCol= model.newMaterialLine(name='glsCol', material= matGlsCol, elemType='ElasticBeam3d',elemSize= eSize,vDirLAxZ=xc.Vector([0,-1,0]))
glsCol.ranges= [ ijkGrid.IJKRange([0,0,2],[0,0,lastZpos])]


#Dictionary of material-lines
allLinList=[botCol,topCol,glsCol]
conjLines= model.setMaterialLinesMap(allLinList)


    # Regions resting on springs (Winkler elastic foundation)
    #   name:     name to identify the region
    #   wModulus: Winkler modulus of the foundation (springs in Z direction)
示例#6
0
matElMembPlat = model.setMaterials([matCantlv])

# Types of surfaces to be discretized from the defined
# material, type of element and size of the elements.
# Parameters:
#   name:     name to identify the type of surface
#   material: name of the material that makes up the surface
#   elemType: element type to be used in the discretization
#   elemSize: mean size of the elements
#   ranges:   lists of grid ranges to delimit the surfaces of
#             the type in question
cantlv = model.newMaterialSurface('cantlv',
                                  material=matCantlv,
                                  elemType='ShellMITC4',
                                  elemSize=eSize)
cantlv.ranges = [ijkGrid.IJKRange([0, 0, 0], [lastXpos, lastYpos, lastZpos])]

allSurfList = [cantlv]

# #Dictionary of material-surfaces
conjSup = model.setMaterialSurfacesMap(allSurfList)

# Types of lines to be discretized from the defined
# material, type of element and size of the elements.
# Parameters:
#   name:     name to identify the type of line
#   material: name of the material that makes up the line
#   elemType: element type to be used in the discretization
#   elemSize: mean size of the elements
#   vDirLAxZ: direction vector for the element local axis Z
#             defined as xc.Vector([x,y,z]). This is the direction in which
示例#7
0
#  Dictionary of materials
matElMembPlat= model.setMaterials([deckSlab,stiffTBeams,prestBeam])

eSize= 0.5
    # Types of surfaces to be discretized from the defined 
    # material, type of element and size of the elements.
    # Parameters:
    #   name:     name to identify the type of surface
    #   material: name of the material that makes up the surface
    #   elemType: element type to be used in the discretization
    #   elemSize: mean size of the elements
    #   ranges:   lists of grid ranges to delimit the surfaces of 
    #             the type in question
deck= model.newMaterialSurface('deck', material=deckSlab, elemType='ShellMITC4',elemSize= eSize)
deck.ranges= [ ijkGrid.IJKRange([0,0,lastZpos],[lastXpos,lastYpos,lastZpos]) ]
#stiff transverse beams (diaphragms)
diaph=model.newMaterialSurface('diaph', material=stiffTBeams, elemType='ShellMITC4',elemSize= eSize)
diaph.ranges= [ ijkGrid.IJKRange([posXbeams[0],0,0],[posXbeams[3],0,2]), ijkGrid.IJKRange([posXbeams[0],1,0],[posXbeams[3],1,2]),ijkGrid.IJKRange([posXbeams[0],2,0],[posXbeams[3],2,2]),ijkGrid.IJKRange([posXbeams[0],3,0],[posXbeams[3],3,2])]

#Dictionary of material-surfaces
conjSup= model.setMaterialSurfacesMap([deck,diaph])

    # Types of lines to be discretized from the defined 
    # material, type of element and size of the elements.
    # Parameters:
    #   name:     name to identify the material-line
    #   material: name of the material that makes up the line
    #   elemType: element type to be used in the discretization
    #   elemSize: mean size of the elements
    #   vDirLAxZ: direction vector for the element local axis Z