def initial_block(self, x, scope): # convolution branch: W_conv = self.get_variable_weight_decay( scope + "/W", shape=[3, 3, 3, 13], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") b_conv = self.get_variable_weight_decay( scope + "/b", shape=[13], # ([out_depth]) initializer=tf.constant_initializer(0), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d( x, W_conv, strides=[1, 2, 2, 1], padding="SAME") + b_conv # max pooling branch: pool_branch = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") # concatenate the branches: concat = tf.concat([conv_branch, pool_branch], axis=3) # (3: the depth axis) # apply batch normalization and PReLU: output = tf.contrib.slim.batch_norm(concat) output = PReLU(output, scope=scope) return output
def encoder_bottleneck_asymmetric(self, x, output_depth, keep_prob, scope, proj_ratio=4): input_shape = x.get_shape().as_list() input_depth = input_shape[3] internal_depth = int(output_depth / proj_ratio) # convolution branch: conv_branch = x # # 1x1 projection: W_proj = self.get_variable_weight_decay( scope + "/W_proj", shape=[1, 1, input_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d(conv_branch, W_proj, strides=[1, 1, 1, 1], padding="VALID") # NOTE! no bias terms # # # batch norm and PReLU: conv_branch = tf.contrib.slim.batch_norm(conv_branch) conv_branch = PReLU(conv_branch, scope=scope + "/proj") # # asymmetric conv: # # # asymmetric conv 1: W_conv1 = self.get_variable_weight_decay( scope + "/W_conv1", shape=[5, 1, internal_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d(conv_branch, W_conv1, strides=[1, 1, 1, 1], padding="SAME") # NOTE! no bias terms # # # asymmetric conv 2: W_conv2 = self.get_variable_weight_decay( scope + "/W_conv2", shape=[1, 5, internal_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") b_conv2 = self.get_variable_weight_decay( scope + "/b_conv2", shape=[internal_depth], # ([out_depth]) initializer=tf.constant_initializer(0), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d( conv_branch, W_conv2, strides=[1, 1, 1, 1 ], padding="SAME") + b_conv2 # # # batch norm and PReLU: conv_branch = tf.contrib.slim.batch_norm(conv_branch) conv_branch = PReLU(conv_branch, scope=scope + "/conv") # # 1x1 expansion: shape = [1, 1, internal_depth, output_depth] W_exp = self.get_variable_weight_decay( scope + "/W_exp", shape=shape, # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") W_exp = tf.reshape(drop_connect(W_exp, keep_prob), shape=shape) conv_branch = tf.nn.conv2d(conv_branch, W_exp, strides=[1, 1, 1, 1], padding="VALID") # NOTE! no bias terms # # # batch norm: conv_branch = tf.contrib.slim.batch_norm(conv_branch) # NOTE! no PReLU here # # regularizer: # conv_branch = dropout(conv_branch, self.keep_prob_pl) # main branch: main_branch = x # add the branches: merged = conv_branch + main_branch # apply PReLU: output = PReLU(merged, scope=scope + "/output") return output
def encoder_bottleneck_regular(self, x, output_depth, scope, keep_prob, proj_ratio=4, downsampling=False): input_shape = x.get_shape().as_list() input_depth = input_shape[3] internal_depth = int(output_depth / proj_ratio) # convolution branch: conv_branch = x # # 1x1 projection: if downsampling: W_conv = self.get_variable_weight_decay( scope + "/W_proj", shape=[2, 2, input_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d(conv_branch, W_conv, strides=[1, 2, 2, 1], padding="VALID") # NOTE! no bias terms else: W_proj = self.get_variable_weight_decay( scope + "/W_proj", shape=[1, 1, input_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d(conv_branch, W_proj, strides=[1, 1, 1, 1], padding="VALID") # NOTE! no bias terms # # # batch norm and PReLU: conv_branch = tf.contrib.slim.batch_norm(conv_branch) conv_branch = PReLU(conv_branch, scope=scope + "/proj") # # conv: W_conv = self.get_variable_weight_decay( scope + "/W_conv", shape=[3, 3, internal_depth, internal_depth], # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") b_conv = self.get_variable_weight_decay( scope + "/b_conv", shape=[internal_depth], # ([out_depth]) initializer=tf.constant_initializer(0), loss_category="encoder_wd_losses") conv_branch = tf.nn.conv2d( conv_branch, W_conv, strides=[1, 1, 1, 1], padding="SAME") + b_conv # # # batch norm and PReLU: conv_branch = tf.contrib.slim.batch_norm(conv_branch) conv_branch = PReLU(conv_branch, scope=scope + "/conv") # # 1x1 expansion: shape = [1, 1, internal_depth, output_depth] W_exp = self.get_variable_weight_decay( scope + "/W_exp", shape=shape, # ([filter_height, filter_width, in_depth, out_depth]) initializer=tf.contrib.layers.xavier_initializer(), loss_category="encoder_wd_losses") W_exp = tf.reshape(drop_connect(W_exp, self.keep_prob_pl), shape=shape) conv_branch = tf.nn.conv2d(conv_branch, W_exp, strides=[1, 1, 1, 1], padding="VALID") # NOTE! no bias terms # # # batch norm: conv_branch = tf.contrib.slim.batch_norm(conv_branch) # NOTE! no PReLU here # # regularizer: # conv_branch = dropout(conv_branch, self.keep_prob_pl) # main branch: main_branch = x if downsampling: # max pooling with argmax (for use in max_unpool in the decoder): main_branch, pooling_indices = tf.nn.max_pool_with_argmax( main_branch, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # (everytime we downsample, we also increase the feature block depth) # pad with zeros so that the feature block depth matches: depth_to_pad = output_depth - input_depth paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, depth_to_pad]]) # (paddings is an integer tensor of shape [4, 2] where 4 is the rank # of main_branch. For each dimension D (D = 0, 1, 2, 3) of main_branch, # paddings[D, 0] is the no of values to add before the contents of # main_branch in that dimension, and paddings[D, 0] is the no of # values to add after the contents of main_branch in that dimension) main_branch = tf.pad(main_branch, paddings=paddings, mode="CONSTANT") # add the branches: merged = conv_branch + main_branch # apply PReLU: output = PReLU(merged, scope=scope + "/output") if downsampling: return output, pooling_indices else: return output