def XGB_over_sample(data): # 采样前的数据 X, y = DataPreprocessing.read_X_y(data) print('原始数据:') DataTools.print_data_ratio(y) X_train, X_test, y_train, y_test = DataTools.data_split(X, y) print('分割后的测试集:') DataTools.print_data_ratio(y_test) print('分割后的训练集:') DataTools.print_data_ratio(y_train) # smote后的数据 X_os, y_os = OverSample.over_sample_own(X_train, y_train) print('上采样后的训练集:') DataTools.print_data_ratio(y_os) start_time = time.clock() y_predict = ModelXGB.xgb_predict(X_os, y_os, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_os, y_os, X_test) end_time = time.clock() cost_time = end_time - start_time result = DataTools.compute_score_list(y_test, y_predict, y_predict_prob, cost_time) pd.DataFrame(result).to_csv('data/score/xgb_oversample.csv') print('结果已保存至score文件夹下 ^_^')
def XGB_smote(data): # 采样前的数据 X, y = DataPreprocessing.read_X_y(data) print('原始数据:') DataTools.print_data_ratio(y) X_train, X_test, y_train, y_test = DataTools.data_split(X, y) print('分割后的测试集:') DataTools.print_data_ratio(y_test) print('分割后的训练集:') DataTools.print_data_ratio(y_train) # smote后的数据 X_smote, y_smote = SmoteOrigin.smote_own(X_train, y_train) print('SMOTE后的训练集:') DataTools.print_data_ratio(y_smote) start_time = time.clock() y_predict = ModelXGB.xgb_predict(X_smote, y_smote, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_smote, y_smote, X_test) end_time = time.clock() cost_time = end_time - start_time result = DataTools.compute_score_list(y_test, y_predict, y_predict_prob, cost_time) pd.DataFrame(result).to_csv('data/score/xgb_smote.csv') print('结果已保存至score文件夹下 ^_^') # 计算混淆矩阵 cnf_matrix = DataTools.compute_confusion_matrix(y_test, y_predict) # 绘制混淆矩阵图 PlotTools.plot_confusion_matrix(cnf_matrix, title='Confusion matrix')
def XGB_under_sample(data): # pandas显示 # count_class = pd.value_counts(under_sample_data['Class']).sort_index() # print('下采用后的class为:', count_class) # 采样前的数据 X, y = DataPreprocessing.read_X_y(data) print('原始数据:') DataTools.print_data_ratio(y) X_train, X_test, y_train, y_test = DataTools.data_split(X, y) print('分割后的训练集:') DataTools.print_data_ratio(y_train) # 下采样后的新数据 X_under_sample_train, y_under_sample_train = UnderSample.under_sample_own( X_train, y_train) print('下采样后的训练集:') DataTools.print_data_ratio(y_under_sample_train) # X_under_sample_train, X_under_sample_test, y_under_sample_train, y_under_sample_test = DataTools.data_split( # X_under_sample, y_under_sample) # print('下采样分割后的训练集:') # DataTools.print_data_ratio(y_under_sample_train) # xgb自带cv训练参数 # ModelXGB.xgb_cv_param(X_under_sample_train, y_under_sample_train) # 使用GridSearchCV训练参数 # ModelXGB.xgb_gridSearchCV(X_under_sample_train, y_under_sample_train) # 训练模型 start_time = time.clock() y_predict = ModelXGB.xgb_predict(X_under_sample_train, y_under_sample_train, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_under_sample_train, y_under_sample_train, X_test) end_time = time.clock() cost_time = end_time - start_time result = DataTools.compute_score_list(y_test, y_predict, y_predict_prob, cost_time) pd.DataFrame(result).to_csv('data/score2/xgb_us2.csv') print('结果已保存至score文件夹下 ^_^') # 计算混淆矩阵 cnf_matrix = DataTools.compute_confusion_matrix(y_test, y_predict) # 绘制混淆矩阵图 PlotTools.plot_confusion_matrix(cnf_matrix, title='Confusion matrix') PlotTools.plot_roc_curve(y_test, y_predict_prob[:, 1])
def XGB_origin(data): X, y = DataPreprocessing.read_X_y(data) print('原始数据:') DataTools.print_data_ratio(y) X_train_temp, X_test, y_train_temp, y_test = DataTools.data_split(X, y) print('分割后的测试集:') DataTools.print_data_ratio(y_test) print('分割后的训练集temp:') DataTools.print_data_ratio(y_train_temp) X_train, X_validate, y_train, y_validate = DataTools.data_split( X_train_temp, y_train_temp) print('分割后的验证集:') DataTools.print_data_ratio(y_validate) print('分割后的训练集:') DataTools.print_data_ratio(y_train) # sss = StratifiedShuffleSplit(n_splits=3, test_size=0.3, random_state=666) # sss.get_n_splits(X, y) start_time = time.clock() y_predict = ModelXGB.xgb_predict(X_train, y_train, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_train, y_train, X_test) end_time = time.clock() cost_time = end_time - start_time result = DataTools.compute_score_list(y_test, y_predict, y_predict_prob, cost_time) pd.DataFrame(result).to_csv('data/score2/xgb_origin.csv') print('结果已保存至score文件夹下 ^_^') # # 计算混淆矩阵 cnf_matrix = DataTools.compute_confusion_matrix(y_test, y_predict) # # 绘制混淆矩阵图 PlotTools.plot_confusion_matrix(cnf_matrix, title='Confusion matrix') PlotTools.plot_roc_curve(y_test, y_predict_prob[:, 1])
def XGB_EE(data): # 子集数目 num_subsets = 5 X, y = DataPreprocessing.read_X_y(data) X_train_tmp, X_test, y_train_tmp, y_test = DataTools.data_split(X, y) X_train, X_validate, y_train, y_validate = DataTools.data_split( X_train_tmp, y_train_tmp) result = {} result_recall = [] result_acc = [] result_precision = [] result_f1 = [] result_f5 = [] result_auc = [] result_gmean = [] result_fpr_temps = [] result_tpr_temps = [] start_time = time.clock() for i in (range(num_subsets)): print( '******************************************************************************' ) print('第 ', i + 1, ' 个分类器开始:') # EE&smote后的数据 X_ee, y_ee = EE.ee_own(X_train, y_train) pd.concat([X_ee, y_ee], axis=1).to_csv('data/subsets/subset_ee%d.csv' % (i + 1)) print('第%d个 子集导出成功!' % (i + 1)) print('训练集子集%d:' % (i + 1)) DataTools.print_data_ratio(y_ee) # 训练参数 # ModelXGB.xgb_cv_param(X_ee, y_ee) # ModelXGB.xgb_gridSearchCV(X_ee, y_ee) # return y_predict = ModelXGB.xgb_predict(X_ee, y_ee, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_ee, y_ee, X_test) recall_, accuracy_, precision_, f1_, f5_, auc_, g_mean_, fpr_, tpr_ = \ DataTools.compute_score(y_test, y_predict, y_predict_prob) result_recall.append(recall_) result_acc.append(accuracy_) result_precision.append(precision_) result_f1.append(f1_) result_f5.append(f5_) result_auc.append(auc_) result_gmean.append(g_mean_) result_fpr_temps.append(fpr_) result_tpr_temps.append(tpr_) end_time = time.clock() result['time'] = end_time - start_time result['recall'] = np.mean(result_recall) result['acc'] = np.mean(result_acc) result['precision'] = np.mean(result_precision) result['f1'] = np.mean(result_f1) result['f5'] = np.mean(result_f5) result['auc'] = np.mean(result_auc) result['gmean'] = np.mean(result_gmean) result['fpr'] = pd.DataFrame(result_fpr_temps).mean() result['tpr'] = pd.DataFrame(result_tpr_temps).mean() pd.DataFrame(result).to_csv('data/score2/xgb_ee3.csv') print('结果已保存至score文件夹下 ^_^') # # 计算混淆矩阵 cnf_matrix = DataTools.compute_confusion_matrix(y_test, y_predict) # # 绘制混淆矩阵图 PlotTools.plot_confusion_matrix(cnf_matrix, title='Confusion matrix') PlotTools.plot_roc_curve(y_test, y_predict_prob[:, 1])
def XGB_EE_smote(data): # 子集数目 num_subsets = 1 X, y = DataPreprocessing.read_X_y(data) print('原始数据:') DataTools.print_data_ratio(y) X_train_temp, X_test, y_train_temp, y_test = DataTools.data_split(X, y) # print('分割后的测试集:') # DataTools.print_data_ratio(y_test) # print('分割后的训练集:') # DataTools.print_data_ratio(y_train) print('分割后的测试集:') DataTools.print_data_ratio(y_test) print('分割后的训练集temp:') DataTools.print_data_ratio(y_train_temp) X_train, X_validate, y_train, y_validate = DataTools.data_split( X_train_temp, y_train_temp) result = {} result_recall = [] result_acc = [] result_precision = [] result_f1 = [] result_auc = [] result_gmean = [] result_fpr_temps = [] result_tpr_temps = [] start_time = time.clock() for i in (range(num_subsets)): print( '******************************************************************************' ) print('第 ', i + 1, ' 个分类器开始:') # EE&smote后的数据 X_ee_smote, y_ee_smote = SmoteEE.smoteEE_own(X_train, y_train) # 训练参数 # ModelXGB.xgb_cv_param(X_ee_smote, y_ee_smote) # ModelXGB.xgb_gridSearchCV(X_ee_smote, y_ee_smote) pd.concat([X_ee_smote, y_ee_smote], axis=1).to_csv('data/subsets/subset%d.csv' % (i + 1)) print('第%d个 子集导出成功!' % (i + 1)) print('训练集子集%d:' % (i + 1)) DataTools.print_data_ratio(y_ee_smote) y_predict = ModelXGB.xgb_predict(X_ee_smote, y_ee_smote, X_test) y_predict_prob = ModelXGB.xgb_predict_prob(X_ee_smote, y_ee_smote, X_test) recall_, accuracy_, precision_, f1_, auc_, g_mean_, fpr_, tpr_ = \ DataTools.compute_score(y_test, y_predict, y_predict_prob) result_recall.append(recall_) result_acc.append(accuracy_) result_precision.append(precision_) result_f1.append(f1_) result_auc.append(auc_) result_gmean.append(g_mean_) result_fpr_temps.append(fpr_) result_tpr_temps.append(tpr_) end_time = time.clock() result['time'] = end_time - start_time result['recall'] = np.mean(result_recall) result['acc'] = np.mean(result_acc) result['precision'] = np.mean(result_precision) result['f1'] = np.mean(result_f1) result['auc'] = np.mean(result_auc) result['gmean'] = np.mean(result_gmean) result['fpr'] = pd.DataFrame(result_fpr_temps).mean() result['tpr'] = pd.DataFrame(result_tpr_temps).mean() pd.DataFrame(result).to_csv('data/score/xgb_smote_reg_ee_tuned.csv') print('结果已保存至score文件夹下 ^_^')