示例#1
0
    def test_pipeline_split(self):
        def initial_model_1():
            model_input = keras.Input(shape=(32, 32, 3))
            model_output = keras.layers.MaxPooling2D(
                name='test_pipeline_split_layer1')(model_input)
            model_output_1 = keras.layers.Conv2D(
                filters=32, kernel_size=3,
                name='test_pipeline_split_layer2')(model_output)
            model_output_2 = keras.layers.Conv2D(
                filters=32, kernel_size=3,
                name='test_pipeline_split_layer3')(model_output)
            model_output = keras.layers.Add(name='test_pipeline_split_layer4')(
                [model_output_1, model_output_2])
            model_output = keras.layers.Flatten(
                name='test_pipeline_split_layer5')(model_output)
            return keras.Model(model_input, model_output)

        def expected_model_1():
            model_input = keras.Input(shape=(32, 32, 3))
            with ipu.keras.PipelineStage(0):
                model_output = keras.layers.MaxPooling2D()(model_input)
                model_output_1 = keras.layers.Conv2D(
                    filters=32, kernel_size=3)(model_output)
            with ipu.keras.PipelineStage(1):
                model_output_2 = keras.layers.Conv2D(
                    filters=32, kernel_size=3)(model_output)
                model_output = keras.layers.Add()(
                    [model_output_1, model_output_2])
            with ipu.keras.PipelineStage(2):
                model_output = keras.layers.Flatten()(model_output)
            return keras.Model(model_input, model_output)

        train_strategy = ipu.ipu_strategy.IPUStrategy()
        with train_strategy.scope():
            model = initial_model_1()
            pipelined_model = ModelFactory.configure_model(
                model=model,
                gradient_accumulation_count=1,
                pipeline_splits=[
                    'test_pipeline_split_layer3', 'test_pipeline_split_layer5'
                ],
                device_mapping=[],
                pipeline_schedule='Grouped',
                available_memory_proportion=[])

            expected_assignments = expected_model_1(
            ).get_pipeline_stage_assignment()
            pipelined_assignments = pipelined_model.get_pipeline_stage_assignment(
            )

            for expected_assignment, pipelined_assignment in zip(
                    expected_assignments, pipelined_assignments):
                assert (expected_assignment.layer.__class__.name ==
                        pipelined_assignment.layer.__class__.name)
                assert (expected_assignment.pipeline_stage ==
                        pipelined_assignment.pipeline_stage)
示例#2
0
 def test_invalid_id_of_device_mapping(self):
     train_strategy = ipu.ipu_strategy.IPUStrategy()
     with train_strategy.scope():
         model = ModelFactory.create_model(model_name='toy_model',
                                           weights=None,
                                           input_shape=(28, 28, 1),
                                           classes=10)
     with self.assertRaises(DimensionError):
         model = ModelFactory.configure_model(
             model=model,
             gradient_accumulation_count=1,
             pipeline_splits=['conv2d_1', 'flatten'],
             device_mapping=[1, 2, 3],
             pipeline_schedule='Grouped',
             available_memory_proportion=[])
示例#3
0
    with train_strategy.scope():

        # Create an instance of the model
        model = ModelFactory.create_model(
            model_name=model_name,
            input_shape=img_shape,
            classes=num_classes,
            accelerator_side_preprocessing_fn=
            accelerator_side_preprocess_train_fn,
            eight_bit_transfer=eight_bit_transfer)

        model = ModelFactory.configure_model(
            model=model,
            gradient_accumulation_count=batch_config.
            gradient_accumulation_count,
            pipeline_splits=pipeline_splits,
            device_mapping=device_mapping,
            pipeline_schedule=pipeline_schedule,
            available_memory_proportion=available_memory_proportion,
            optimizer_state_offloading=optimizer_state_offloading)

        if training:
            # prepare the learning rate scheduler
            lr_outfeed_queue = ipu.ipu_outfeed_queue.IPUOutfeedQueue(
                outfeed_mode=ipu.ipu_outfeed_queue.IPUOutfeedMode.LAST)
            lr_scheduler = get_lr_scheduler(
                scheduler_name=lr_schedule,
                schedule_params=lr_schedule_params,
                warmup_params=lr_warmup_params,
                global_batch_size=batch_config.global_batch_size,
                weight_updates_per_epoch=weight_updates_per_epoch,