def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = AlbertConfig.from_pretrained(bert_config_file) # print("Building PyTorch model from configuration: {}".format(str(config))) model = AlbertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_albert(model, config, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)
import json from scipy.spatial.distance import cosine import code import json import torch import re import numpy as np from model.modeling_albert import AlbertConfig, AlbertForSequenceClassification from model import tokenization_albert from model.file_utils import WEIGHTS_NAME tokenizer = tokenization_albert.FullTokenizer( vocab_file='./trained_bert_model/albert_small/vocab.txt') config = AlbertConfig.from_pretrained('./trained_bert_model/albert_small/', num_labels=2, finetuning_task='lcqmc') model = AlbertForSequenceClassification.from_pretrained( './trained_bert_model/albert_small/', config=config) space_pattern = re.compile(r'\s') alphanum_pattern = re.compile(r'\(?[a-zA-Z0-9]+-?[a-zA-Z0-9]*\)?') pattern_string = r'^你知道|请问|我想知道|谁知道|我很好奇|有谁知道|大家知道|有人知道|请告诉我|我想了解一下|请说出|告诉我|能告诉我|你了解|你清楚|' \ r'你能说出|谁是|你能告诉我|我想请问|我想问问|我想问一下|我想了解|我很想知道|你们知道|问一下|我好奇|谁能告诉我|请问一下|你觉得|什么是' def bert_output(question, predicate): question_sep = tokenizer.tokenize(question) predicate_sep = tokenizer.tokenize(predicate) text = ["[CLS]"] + question_sep + ["[SEP]"] + predicate_sep + ["[SEP]"] indexed_tokens = tokenizer.convert_tokens_to_ids(text)
def main(): parser = argparse.ArgumentParser() # parser.add_argument("--arch", default='albert_xlarge', type=str) parser.add_argument("--arch", default='albert_large', type=str) parser.add_argument('--bert_dir', default='pretrain/pytorch/albert_large_zh', type=str) parser.add_argument('--albert_config_path', default='configs/albert_config_large.json', type=str) parser.add_argument('--task_name', default='lcqmc', type=str) parser.add_argument( "--train_max_seq_len", default=64, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument( "--eval_max_seq_len", default=64, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument('--share_type', default='all', type=str, choices=['all', 'attention', 'ffn', 'None']) parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the test set.") parser.add_argument( "--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=16, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.1, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=int, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument( "--eval_all_checkpoints", action='store_true', help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument( '--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() # Fix bug: Config is wrong from base.py if it is not base config['bert_dir'] = args.bert_dir config['albert_config_path'] = args.albert_config_path args.model_save_path = config['checkpoint_dir'] / f'{args.arch}' args.model_save_path.mkdir(exist_ok=True) # Setudistant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device init_logger(log_file=config['log_dir'] / 'finetuning.log') logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # --------- data processor = AlbertProcessor(vocab_path=config['albert_vocab_path'], do_lower_case=args.do_lower_case) label_list = processor.get_labels() num_labels = len(label_list) if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab bert_config = AlbertConfig.from_pretrained(str( config['albert_config_path']), share_type=args.share_type, num_labels=num_labels) logger.info("Training/evaluation parameters %s", args) metrics = Accuracy(topK=1) # Training if args.do_train: train_data = processor.get_train(config['data_dir'] / "train.txt") train_examples = processor.create_examples( lines=train_data, example_type='train', cached_examples_file=config['data_dir'] / f"cached_train_examples_{args.arch}") train_features = processor.create_features( examples=train_examples, max_seq_len=args.train_max_seq_len, cached_features_file=config['data_dir'] / "cached_train_features_{}_{}".format(args.train_max_seq_len, args.arch)) train_dataset = processor.create_dataset(train_features) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) valid_data = processor.get_dev(config['data_dir'] / "dev.txt") valid_examples = processor.create_examples( lines=valid_data, example_type='valid', cached_examples_file=config['data_dir'] / f"cached_valid_examples_{args.arch}") valid_features = processor.create_features( examples=valid_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config['data_dir'] / "cached_valid_features_{}_{}".format(args.eval_max_seq_len, args.arch)) valid_dataset = processor.create_dataset(valid_features) valid_sampler = SequentialSampler(valid_dataset) valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size) model = AlbertForSequenceClassification.from_pretrained( config['bert_dir'], config=bert_config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) train(args, train_dataloader, valid_dataloader, metrics, model) if args.do_test: test_data = processor.get_train(config['data_dir'] / "test.txt") test_examples = processor.create_examples( lines=test_data, example_type='test', cached_examples_file=config['data_dir'] / f"cached_test_examples_{args.arch}") test_features = processor.create_features( examples=test_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config['data_dir'] / "cached_test_features_{}_{}".format(args.eval_max_seq_len, args.arch)) test_dataset = processor.create_dataset(test_features) test_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size) model = AlbertForSequenceClassification.from_pretrained( args.model_save_path, config=bert_config) model.to(args.device) test_log = evaluate(args, model, test_dataloader, metrics) print(test_log)
def main(): parser = ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--config_path", default=None, type=str, required=True) parser.add_argument("--vocab_path", default=None, type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--model_path", default='', type=str) parser.add_argument('--data_name', default='albert', type=str) parser.add_argument( "--file_num", type=int, default=10, help="Number of dynamic masking to pregenerate (with different masks)") parser.add_argument( "--reduce_memory", action="store_true", help= "Store training data as on-disc memmaps to massively reduce memory usage" ) parser.add_argument("--epochs", type=int, default=4, help="Number of epochs to train for") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--num_eval_steps', default=1000) parser.add_argument('--num_save_steps', default=2000) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--train_batch_size", default=16, type=int, help="Total batch size for training.") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup over warmup_steps.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument("--learning_rate", default=0.000176, type=float, help="The initial learning rate for Adam.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16_opt_level', type=str, default='O2', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") args = parser.parse_args() args.data_dir = Path(args.data_dir) args.output_dir = Path(args.output_dir) pregenerated_data = args.data_dir / "corpus/train" init_logger(log_file=str(args.output_dir / "train_albert_model.log")) assert pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!" samples_per_epoch = 0 for i in range(args.file_num): data_file = pregenerated_data / f"{args.data_name}_file_{i}.json" metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json" if data_file.is_file() and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) samples_per_epoch += metrics['num_training_examples'] else: if i == 0: exit("No training data was found!") print( f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})." ) print( "This script will loop over the available data, but training diversity may be negatively impacted." ) break logger.info(f"samples_per_epoch: {samples_per_epoch}") if args.local_rank == -1 or args.no_cuda: device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) args.n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}" ) if args.gradient_accumulation_steps < 1: raise ValueError( f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1" ) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps seed_everything(args.seed) tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=args.do_lower_case) total_train_examples = samples_per_epoch * args.epochs num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion) bert_config = AlbertConfig.from_pretrained(args.config_path) model = AlbertForPreTraining(config=bert_config) if args.model_path: model = AlbertForPreTraining.from_pretrained(args.model_path) model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_train_optimization_steps) # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) #This piece is totally uncrlear to me, and needs to be understood. ==> Maybe listen to Abishek #- Not clear however, why it is different from the copy I have in my pc # if args.model_path: # optimizer.load_state_dict(torch.load(args.model_path + "/optimizer.bin")) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) global_step = 0 mask_metric = LMAccuracy() sop_metric = LMAccuracy() tr_mask_acc = AverageMeter() tr_sop_acc = AverageMeter() tr_loss = AverageMeter() tr_mask_loss = AverageMeter() tr_sop_loss = AverageMeter() loss_fct = CrossEntropyLoss(ignore_index=-1) train_logs = {} logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_examples}") logger.info(f" Batch size = {args.train_batch_size}") logger.info(f" Num steps = {num_train_optimization_steps}") logger.info(f" warmup_steps = {args.warmup_steps}") start_time = time.time() seed_everything(args.seed) # Added here for reproducibility for epoch in range(args.epochs): for idx in range(args.file_num): epoch_dataset = PregeneratedDataset( file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer, reduce_memory=args.reduce_memory, data_name=args.data_name) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=8) model.train() nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) prediction_scores = outputs[0] seq_relationship_score = outputs[1] masked_lm_loss = loss_fct( prediction_scores.view(-1, bert_config.vocab_size), lm_label_ids.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), is_next.view(-1)) loss = masked_lm_loss + next_sentence_loss mask_metric(logits=prediction_scores.view( -1, bert_config.vocab_size), target=lm_label_ids.view(-1)) sop_metric(logits=seq_relationship_score.view(-1, 2), target=is_next.view(-1)) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() nb_tr_steps += 1 tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0)) tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0)) tr_loss.update(loss.item(), n=1) tr_mask_loss.update(masked_lm_loss.item(), n=1) tr_sop_loss.update(next_sentence_loss.item(), n=1) if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % args.num_eval_steps == 0: now = time.time() eta = now - start_time if eta > 3600: eta_format = ('%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)) elif eta > 60: eta_format = '%d:%02d' % (eta // 60, eta % 60) else: eta_format = '%ds' % eta train_logs['loss'] = tr_loss.avg train_logs['mask_acc'] = tr_mask_acc.avg train_logs['sop_acc'] = tr_sop_acc.avg train_logs['mask_loss'] = tr_mask_loss.avg train_logs['sop_loss'] = tr_sop_loss.avg show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \ f'- ETA: {eta_format}' + "-".join( [f' {key}: {value:.4f} ' for key, value in train_logs.items()]) logger.info(show_info) tr_mask_acc.reset() tr_sop_acc.reset() tr_loss.reset() tr_mask_loss.reset() tr_sop_loss.reset() start_time = now if global_step % args.num_save_steps == 0: if args.local_rank in [-1, 0] and args.num_save_steps > 0: # Save model checkpoint output_dir = args.output_dir / f'lm-checkpoint-{global_step}' if not output_dir.exists(): output_dir.mkdir() # save model model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(str(output_dir)) torch.save(args, str(output_dir / 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), str(output_dir / "optimizer.bin")) # save config output_config_file = output_dir / CONFIG_NAME with open(str(output_config_file), 'w') as f: f.write(model_to_save.config.to_json_string()) # save vocab tokenizer.save_vocabulary(output_dir)
def main(): if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) # type_task = args.model_type + '_' + '{}'.format(args.task_name) # if not os.path.exists(os.path.join(args.output_dir, type_task)): # os.mkdir(os.path.join(args.output_dir, type_task)) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) args.n_gpu = 1 args.device = device # logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", # args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) seed_everything(args.seed) args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name] args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # if args.local_rank not in [-1, 0]: # torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) model = AlbertForSequenceClassification.from_pretrained( args.model_name_or_path, config=config) model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training args.do_train = True if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if args.do_train: if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) model_to_save = model.module if hasattr( model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation args.do_eval = True results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSequenceClassification.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in results: writer.write("%s = %s\n" % (key, str(value))) args.do_predict = True predict_results = [] if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) checkpoints = [checkpoints[-1]] for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSequenceClassification.from_pretrained(checkpoint) model.to(args.device) result = predict(args, model, tokenizer, prefix=prefix) predict_results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in predict_results: writer.write("%s = %s\n" % (key, str(value)))
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: ") parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list") parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--vocab_file", default='', type=str) parser.add_argument("--spm_model_file", default='', type=str) ## Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--output_eval", action='store_true', help="Whether to write output result.") parser.add_argument( "--do_predict", action='store_true', help="Whether to run the model in inference mode on the test set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs." ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1000, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action='store_true', help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument( '--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name != "ner": raise ValueError("Task error: %s, must be ner" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels_ner(args.data_dir) num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) model = AlbertForNer.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, label_list, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr( model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForNer.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, label_list, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in results: writer.write("%s = %s\n" % (key, str(value)))
seed_everything(args.seed) tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=args.do_lower_case) total_train_examples = samples_per_epoch * args.epochs num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion) bert_config = AlbertConfig.from_pretrained(args.config_path) model = AlbertForPreTraining(config=bert_config) if args.model_path: model = AlbertForPreTraining.from_pretrained(args.model_path) model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) for name, param in param_optimizer: print(f" param size {name}-->{param.size()} ") no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay }, {
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default='dataset/car_data', type=str, required=False, help="输入数据文件地址") parser.add_argument("--model_type", default='albert', type=str, required=False, help="模型种类") parser.add_argument("--model_name_or_path", default='prev_trained_model/albert_chinese_small', type=str, required=False, help="模型参数文件地址") parser.add_argument("--task_name", default='car', type=str, required=False, help="那个种类数据" + ", ".join(processors.keys())) parser.add_argument("--output_dir", default='outputs', type=str, required=False, help="输出文件地址") parser.add_argument("--vocab_file", default='prev_trained_model/albert_chinese_small/vocab.txt', type=str) ## Other parameters parser.add_argument("--config_name", default="", type=str, help="配置文件地址") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=512, type=int, help="句子最大长度") parser.add_argument("--do_train", action='store_true', help="训练") parser.add_argument("--do_eval", action='store_true', help="验证") parser.add_argument("--do_predict", action='store_true', help="预测") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="批量大小") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="验证批量大小") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="Adam学习率") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.") parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1000, help="每多少部保存一次") parser.add_argument("--eval_all_checkpoints",type=str,default='do',# action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", type=int, default=0, # action='store_true', help="GPU") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="随机种子") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=0, help="For distributed training: local_rank") args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) type_task = args.model_type + '_' + '{}'.format(args.task_name) if not os.path.exists(os.path.join(args.output_dir, type_task)): os.mkdir(os.path.join(args.output_dir, type_task)) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) # torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) model =AlbertForSequenceClassification.from_pretrained(args.model_name_or_path, config=config) #if args.local_rank == 0: # torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training # args.do_train = True if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train:# and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation # args.do_eval = True results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) checkpoints = [(0,args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints,key =lambda x:x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _,checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model =AlbertForSequenceClassification.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key,value in results: writer.write("%s = %s\n" % (key, str(value))) # args.do_predict = True predict_results = [] if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, ) # checkpoints_path = os.path.join(args.output_dir, 'checkpoint-4000') checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) checkpoints = [checkpoints[-1]] for _, checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSequenceClassification.from_pretrained(checkpoint) model.to(args.device) result = predict(args, model, tokenizer, prefix=prefix) predict_results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in predict_results: writer.write("%s = %s\n" % (key, str(value)))