示例#1
0
        'anchors': [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169],
                    [344, 319]],
        'anchors_mask': [[1, 2, 3], [3, 4, 5]],
        'image_shape': (416, 416),
        'num_classes': 80,
        'score_threshold': 0.6,
        'iou_threshold': 0.3,
        'batch_size': 2,
        'drop_rate': 0.2,
        'block_size': 3
    }

    class_name = get_classes('./coco_classes.txt')

    model = creat_CSPYOLO(**default)
    load_weights(model, './yolov4-tiny.weights')
    img = cv2.imread('./kite.jpg')
    img = resiresize_img(img)
    img = padding_img(img)
    pred_img = np.expand_dims(img, axis=0).astype(np.float32) / 255

    result = model.predict(pred_img)
    boxes, class_, score = output_result(result, **default)

    draw_img(img, boxes, class_, score, class_name, **default)

    cv2.imwrite('./predict.jpg', img)

    cv2.imshow('img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
示例#2
0
            boxes = preprocess_true_boxes(loc, **self.model_dict)
            image_data.append(img)
            y_true.append(boxes)

        
        image_data = (np.array(image_data) / 255).astype(np.float32)
        y_true = np.array(y_true)

        return image_data, y_true


if __name__ == "__main__":
    model = creat_CSPYOLO(**train_default)
    if train_default['use_pretrain']:
        custom = False if train_default['num_classes'] == 80 else True
        load_weights(model, './yolov4.weights', custom_cls=custom)
    
    model.summary()
    
    annotation_path = 'path'
    log_dir = 'path'
    classes_path = 'path'
    class_name = get_classes(classes_path)

    xmls = os.listdir(annotation_path)
    total_train = len(xmls)

    callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath= log_dir + 'best_loss.h5',
                                                    save_best_only=True,
                                                    save_weights_only=True,
                                                    monitor='loss',
示例#3
0
                           [36, 75], [76, 55], [72, 146],
                           [142, 110], [192, 243], [459, 401]],
               'anchors_mask': [[0, 1, 2], [3, 4, 5], [6, 7, 8]],
               'image_shape': (608, 608),
               'num_classes': 80,
               'score_threshold': 0.6,
               'iou_threshold': 0.3,
               'batch_size': 2,
               'drop_rate' : 0.2,
               'block_size' : 3
              }

    class_name = get_classes('./coco_classes.txt')

    model = creat_CSPYOLO(**default)
    load_weights(model, './yolov4.weights')
    img = cv2.imread('./kite.jpg')
    img = resiresize_img(img)
    img = padding_img(img)
    pred_img = np.expand_dims(img, axis=0).astype(np.float32) / 255

    result = model.predict(pred_img)
    boxes, class_, score = output_result(result, **default)

    draw_img(img, boxes, class_, score, class_name, **default)

    cv2.imwrite('./predict.jpg', img)

    cv2.imshow('img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()