示例#1
0
def main(json_path):
    cwd = Path.cwd()
    with open(cwd / json_path) as io:
        params = json.loads(io.read())

    # tokenizer
    vocab_path = params['filepath'].get('vocab')
    with open(cwd / vocab_path, mode='rb') as io:
        vocab = pickle.load(io)
    length = params['padder'].get('length')
    padder = PadSequence(length=length,
                         pad_val=vocab.to_indices(vocab.padding_token))
    tokenizer = Tokenizer(vocab=vocab, split_fn=split_to_jamo, pad_fn=padder)

    # model (restore)
    save_path = cwd / params['filepath'].get('ckpt')
    ckpt = torch.load(save_path)
    num_classes = params['model'].get('num_classes')
    embedding_dim = params['model'].get('embedding_dim')
    k_max = params['model'].get('k_max')

    model = VDCNN(num_classes=num_classes,
                  embedding_dim=embedding_dim,
                  k_max=k_max,
                  vocab=tokenizer.vocab)
    model.load_state_dict(ckpt['model_state_dict'])

    # evaluation
    batch_size = params['training'].get('batch_size')
    tr_path = cwd / params['filepath'].get('tr')
    val_path = cwd / params['filepath'].get('val')
    tst_path = cwd / params['filepath'].get('tst')

    tr_ds = Corpus(tr_path, tokenizer.split_and_transform)
    tr_dl = DataLoader(tr_ds, batch_size=batch_size, num_workers=4)
    val_ds = Corpus(val_path, tokenizer.split_and_transform)
    val_dl = DataLoader(val_ds, batch_size=batch_size, num_workers=4)
    tst_ds = Corpus(tst_path, tokenizer.split_and_transform)
    tst_dl = DataLoader(tst_ds, batch_size=batch_size, num_workers=4)

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    tr_acc = get_accuracy(model, tr_dl, device)
    val_acc = get_accuracy(model, val_dl, device)
    tst_acc = get_accuracy(model, tst_dl, device)

    print('tr_acc: {:.2%}, val_acc: {:.2%}, tst_acc: {:.2%}'.format(
        tr_acc, val_acc, tst_acc))
示例#2
0
    model_config = Config(model_dir / 'config.json')

    # tokenizer
    with open(data_config.vocab, mode='rb') as io:
        vocab = pickle.load(io)
    pad_sequence = PadSequence(length=model_config.length,
                               pad_val=vocab.to_indices(vocab.padding_token))
    tokenizer = Tokenizer(vocab=vocab,
                          split_fn=split_to_jamo,
                          pad_fn=pad_sequence)

    # model (restore)
    checkpoint_manager = CheckpointManager(model_dir)
    checkpoint = checkpoint_manager.load_checkpoint('best.tar')
    model = VDCNN(num_classes=model_config.num_classes,
                  embedding_dim=model_config.embedding_dim,
                  k_max=model_config.k_max,
                  vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint['model_state_dict'])

    # evaluation
    summary_manager = SummaryManager(model_dir)
    filepath = getattr(data_config, args.dataset)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=model_config.batch_size, num_workers=4)

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    summary = evaluate(model, dl, {
        'loss': nn.CrossEntropyLoss(),
示例#3
0
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    if not exp_dir.exists():
        exp_dir.mkdir(parents=True)

    if args.fix_seed:
        torch.manual_seed(777)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    tokenizer = get_tokenizer(dataset_config, model_config)
    tr_dl, val_dl = get_data_loaders(dataset_config, tokenizer,
                                     args.batch_size)

    model = VDCNN(num_classes=model_config.num_classes,
                  embedding_dim=model_config.embedding_dim,
                  k_max=model_config.k_max,
                  vocab=tokenizer.vocab)

    loss_fn = nn.CrossEntropyLoss()
    opt = optim.Adam(params=model.parameters(), lr=args.learning_rate)
    scheduler = ReduceLROnPlateau(opt, patience=5)
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    writer = SummaryWriter(f'{exp_dir}/runs')
    checkpoint_manager = CheckpointManager(exp_dir)
    summary_manager = SummaryManager(exp_dir)
    best_val_loss = 1e+10

    for epoch in tqdm(range(args.epochs), desc='epochs'):

        tr_loss = 0
        tr_acc = 0

        model.train()
        for step, mb in tqdm(enumerate(tr_dl), desc='steps', total=len(tr_dl)):
            x_mb, y_mb = map(lambda elm: elm.to(device), mb)

            opt.zero_grad()
            y_hat_mb = model(x_mb)
            mb_loss = loss_fn(y_hat_mb, y_mb)
            mb_loss.backward()
            opt.step()

            with torch.no_grad():
                mb_acc = acc(y_hat_mb, y_mb)

            tr_loss += mb_loss.item()
            tr_acc += mb_acc.item()

            if (epoch * len(tr_dl) + step) % args.summary_step == 0:
                val_loss = evaluate(model, val_dl, {'loss': loss_fn},
                                    device)['loss']
                writer.add_scalars('loss', {
                    'train': tr_loss / (step + 1),
                    'val': val_loss
                },
                                   epoch * len(tr_dl) + step)
                model.train()
        else:
            tr_loss /= (step + 1)
            tr_acc /= (step + 1)

            tr_summary = {'loss': tr_loss, 'acc': tr_acc}
            val_summary = evaluate(model, val_dl, {
                'loss': loss_fn,
                'acc': acc
            }, device)
            scheduler.step(val_summary['loss'])
            tqdm.write(
                f"epoch: {epoch+1}\n"
                f"tr_loss: {tr_summary['loss']:.3f}, val_loss: {val_summary['loss']:.3f}\n"
                f"tr_acc: {tr_summary['acc']:.2%}, val_acc: {val_summary['acc']:.2%}"
            )

            val_loss = val_summary['loss']
            is_best = val_loss < best_val_loss

            if is_best:
                state = {
                    'epoch': epoch + 1,
                    'model_state_dict': model.state_dict(),
                    'opt_state_dict': opt.state_dict()
                }
                summary = {'train': tr_summary, 'validation': val_summary}

                summary_manager.update(summary)
                summary_manager.save('summary.json')
                checkpoint_manager.save_checkpoint(state, 'best.tar')

                best_val_loss = val_loss
示例#4
0
    data_config = Config(data_dir / 'config.json')
    model_config = Config(model_dir / 'config.json')

    # tokenizer
    with open(data_config.vocab, mode='rb') as io:
        vocab = pickle.load(io)

    pad_sequence = PadSequence(length=model_config.length,
                               pad_val=vocab.to_indices(vocab.padding_token))
    tokenizer = Tokenizer(vocab=vocab,
                          split_fn=split_to_jamo,
                          pad_fn=pad_sequence)

    # model
    model = VDCNN(num_classes=model_config.num_classes,
                  embedding_dim=model_config.embedding_dim,
                  k_max=model_config.k_max,
                  vocab=tokenizer.vocab)

    # training
    tr_ds = Corpus(data_config.train, tokenizer.split_and_transform)
    tr_dl = DataLoader(tr_ds,
                       batch_size=model_config.batch_size,
                       shuffle=True,
                       num_workers=4,
                       drop_last=True)
    val_ds = Corpus(data_config.validation, tokenizer.split_and_transform)
    val_dl = DataLoader(val_ds, batch_size=model_config.batch_size)

    loss_fn = nn.CrossEntropyLoss()
    opt = optim.Adam(params=model.parameters(), lr=model_config.learning_rate)
    scheduler = ReduceLROnPlateau(opt, patience=5)
示例#5
0
def main(json_path):
    cwd = Path.cwd()
    with open(cwd / json_path) as io:
        params = json.loads(io.read())

    # tokenizer
    vocab_path = params['filepath'].get('vocab')
    with open(cwd / vocab_path, mode='rb') as io:
        vocab = pickle.load(io)
    length = params['padder'].get('length')
    padder = PadSequence(length, pad_val=vocab.to_indices(vocab.padding_token))
    tokenizer = Tokenizer(vocab=vocab, split_fn=split_to_jamo, pad_fn=padder)

    # model
    num_classes = params['model'].get('num_classes')
    embedding_dim = params['model'].get('embedding_dim')
    k_max = params['model'].get('k_max')
    model = VDCNN(num_classes=num_classes, embedding_dim=embedding_dim, k_max=k_max, vocab=tokenizer.vocab)

    # training
    epochs = params['training'].get('epochs')
    batch_size = params['training'].get('batch_size')
    learning_rate = params['training'].get('learning_rate')
    global_step = params['training'].get('global_step')

    tr_path = cwd / params['filepath'].get('tr')
    val_path = cwd / params['filepath'].get('val')
    tr_ds = Corpus(tr_path, tokenizer.split_and_transform)
    tr_dl = DataLoader(tr_ds, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=True)
    val_ds = Corpus(val_path, tokenizer.split_and_transform)
    val_dl = DataLoader(val_ds, batch_size=batch_size, num_workers=4)

    loss_fn = nn.CrossEntropyLoss()
    opt = optim.Adam(params=model.parameters(), lr=learning_rate, weight_decay=1e-4)
    scheduler = ReduceLROnPlateau(opt, patience=5)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)
    writer = SummaryWriter('./runs/{}'.format(params['version']))

    for epoch in tqdm(range(epochs), desc='epochs'):

        tr_loss = 0

        model.train()
        for step, mb in tqdm(enumerate(tr_dl), desc='steps', total=len(tr_dl)):
            x_mb, y_mb = map(lambda elm: elm.to(device), mb)

            opt.zero_grad()
            mb_loss = loss_fn(model(x_mb), y_mb)
            mb_loss.backward()
            opt.step()

            tr_loss += mb_loss.item()

            if (epoch * len(tr_dl) + step) % global_step == 0:
                val_loss = evaluate(model, val_dl, loss_fn, device)
                writer.add_scalars('loss', {'train': tr_loss / (step + 1),
                                            'validation': val_loss}, epoch * len(tr_dl) + step)
                model.train()
        else:
            tr_loss /= (step + 1)

        val_loss = evaluate(model, val_dl, loss_fn, device)
        scheduler.step(val_loss)

        tqdm.write('epoch : {}, tr_loss : {:.3f}, val_loss : {:.3f}'.format(epoch + 1, tr_loss, val_loss))

    ckpt = {'model_state_dict': model.state_dict(),
            'opt_state_dict': opt.state_dict()}

    save_path = cwd / params['filepath'].get('ckpt')
    torch.save(ckpt, save_path)