示例#1
0
def test(args):
    test_set = Dataset.from_bin_file(args.test_file)
    assert args.load_model

    print('load model from [%s]' % args.load_model, file=sys.stderr)
    params = torch.load(args.load_model,
                        map_location=lambda storage, loc: storage)
    vocab = params['vocab']
    transition_system = params['transition_system']
    saved_args = params['args']
    saved_state = params['state_dict']
    saved_args.cuda = args.cuda

    parser = Parser(saved_args, vocab, transition_system)
    parser.load_state_dict(saved_state)

    if args.cuda: parser = parser.cuda()
    parser.eval()

    eval_results, decode_results = evaluation.evaluate(
        test_set.examples,
        parser,
        args,
        verbose=True,
        return_decode_result=True)
    print(eval_results, file=sys.stderr)
    if args.save_decode_to:
        pkl.dump(decode_results, open(args.save_decode_to, 'wb'))
示例#2
0
def self_training(args):
    """Perform self-training

    First load decoding results on disjoint data
    also load pre-trained model and perform supervised
    training on both existing training data and the
    decoded results
    """

    print('load pre-trained model from [%s]' % args.load_model,
          file=sys.stderr)
    params = torch.load(args.load_model,
                        map_location=lambda storage, loc: storage)
    vocab = params['vocab']
    transition_system = params['transition_system']
    saved_args = params['args']
    saved_state = params['state_dict']

    # transfer arguments
    saved_args.cuda = args.cuda
    saved_args.save_to = args.save_to
    saved_args.train_file = args.train_file
    saved_args.unlabeled_file = args.unlabeled_file
    saved_args.dev_file = args.dev_file
    saved_args.load_decode_results = args.load_decode_results
    args = saved_args

    update_args(args)

    model = Parser(saved_args, vocab, transition_system)
    model.load_state_dict(saved_state)

    if args.cuda: model = model.cuda()
    model.train()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    print('load unlabeled data [%s]' % args.unlabeled_file, file=sys.stderr)
    unlabeled_data = Dataset.from_bin_file(args.unlabeled_file)

    print('load decoding results of unlabeled data [%s]' %
          args.load_decode_results,
          file=sys.stderr)
    decode_results = pickle.load(open(args.load_decode_results))

    labeled_data = Dataset.from_bin_file(args.train_file)
    dev_set = Dataset.from_bin_file(args.dev_file)

    print('Num. examples in unlabeled data: %d' % len(unlabeled_data),
          file=sys.stderr)
    assert len(unlabeled_data) == len(decode_results)
    self_train_examples = []
    for example, hyps in zip(unlabeled_data, decode_results):
        if hyps:
            hyp = hyps[0]
            sampled_example = Example(idx='self_train-%s' % example.idx,
                                      src_sent=example.src_sent,
                                      tgt_code=hyp.code,
                                      tgt_actions=hyp.action_infos,
                                      tgt_ast=hyp.tree)
            self_train_examples.append(sampled_example)
    print('Num. self training examples: %d, Num. labeled examples: %d' %
          (len(self_train_examples), len(labeled_data)),
          file=sys.stderr)

    train_set = Dataset(examples=labeled_data.examples + self_train_examples)

    print('begin training, %d training examples, %d dev examples' %
          (len(train_set), len(dev_set)),
          file=sys.stderr)
    print('vocab: %s' % repr(vocab), file=sys.stderr)

    epoch = train_iter = 0
    report_loss = report_examples = 0.
    history_dev_scores = []
    num_trial = patience = 0
    while True:
        epoch += 1
        epoch_begin = time.time()

        for batch_examples in train_set.batch_iter(batch_size=args.batch_size,
                                                   shuffle=True):
            batch_examples = [
                e for e in batch_examples
                if len(e.tgt_actions) <= args.decode_max_time_step
            ]

            train_iter += 1
            optimizer.zero_grad()

            loss = -model.score(batch_examples)
            # print(loss.data)
            loss_val = torch.sum(loss).data[0]
            report_loss += loss_val
            report_examples += len(batch_examples)
            loss = torch.mean(loss)

            loss.backward()

            # clip gradient
            if args.clip_grad > 0.:
                grad_norm = torch.nn.utils.clip_grad_norm(
                    model.parameters(), args.clip_grad)

            optimizer.step()

            if train_iter % args.log_every == 0:
                print('[Iter %d] encoder loss=%.5f' %
                      (train_iter, report_loss / report_examples),
                      file=sys.stderr)

                report_loss = report_examples = 0.

        print('[Epoch %d] epoch elapsed %ds' %
              (epoch, time.time() - epoch_begin),
              file=sys.stderr)
        # model_file = args.save_to + '.iter%d.bin' % train_iter
        # print('save model to [%s]' % model_file, file=sys.stderr)
        # model.save(model_file)

        # perform validation
        print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
        eval_start = time.time()
        eval_results = evaluation.evaluate(dev_set.examples,
                                           model,
                                           args,
                                           verbose=True)
        dev_acc = eval_results['accuracy']
        print('[Epoch %d] code generation accuracy=%.5f took %ds' %
              (epoch, dev_acc, time.time() - eval_start),
              file=sys.stderr)
        is_better = history_dev_scores == [] or dev_acc > max(
            history_dev_scores)
        history_dev_scores.append(dev_acc)

        if is_better:
            patience = 0
            model_file = args.save_to + '.bin'
            print('save currently the best model ..', file=sys.stderr)
            print('save model to [%s]' % model_file, file=sys.stderr)
            model.save(model_file)
            # also save the optimizers' state
            torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
        elif epoch == args.max_epoch:
            print('reached max epoch, stop!', file=sys.stderr)
            exit(0)
        elif patience < args.patience:
            patience += 1
            print('hit patience %d' % patience, file=sys.stderr)

        if patience == args.patience:
            num_trial += 1
            print('hit #%d trial' % num_trial, file=sys.stderr)
            if num_trial == args.max_num_trial:
                print('early stop!', file=sys.stderr)
                exit(0)

            # decay lr, and restore from previously best checkpoint
            lr = optimizer.param_groups[0]['lr'] * args.lr_decay
            print('load previously best model and decay learning rate to %f' %
                  lr,
                  file=sys.stderr)

            # load model
            params = torch.load(args.save_to + '.bin',
                                map_location=lambda storage, loc: storage)
            model.load_state_dict(params['state_dict'])
            if args.cuda: model = model.cuda()

            # load optimizers
            if args.reset_optimizer:
                print('reset optimizer', file=sys.stderr)
                optimizer = torch.optim.Adam(
                    model.inference_model.parameters(), lr=lr)
            else:
                print('restore parameters of the optimizers', file=sys.stderr)
                optimizer.load_state_dict(
                    torch.load(args.save_to + '.optim.bin'))

            # set new lr
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # reset patience
            patience = 0
示例#3
0
文件: exp.py 项目: chubbymaggie/tranX
def self_training(args):
    """Perform self-training

    First load decoding results on disjoint data
    also load pre-trained model and perform supervised
    training on both existing training data and the
    decoded results
    """

    print('load pre-trained model from [%s]' % args.load_model, file=sys.stderr)
    params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
    vocab = params['vocab']
    transition_system = params['transition_system']
    saved_args = params['args']
    saved_state = params['state_dict']

    # transfer arguments
    saved_args.cuda = args.cuda
    saved_args.save_to = args.save_to
    saved_args.train_file = args.train_file
    saved_args.unlabeled_file = args.unlabeled_file
    saved_args.dev_file = args.dev_file
    saved_args.load_decode_results = args.load_decode_results
    args = saved_args

    update_args(args)

    model = Parser(saved_args, vocab, transition_system)
    model.load_state_dict(saved_state)

    if args.cuda: model = model.cuda()
    model.train()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    print('load unlabeled data [%s]' % args.unlabeled_file, file=sys.stderr)
    unlabeled_data = Dataset.from_bin_file(args.unlabeled_file)

    print('load decoding results of unlabeled data [%s]' % args.load_decode_results, file=sys.stderr)
    decode_results = pickle.load(open(args.load_decode_results))

    labeled_data = Dataset.from_bin_file(args.train_file)
    dev_set = Dataset.from_bin_file(args.dev_file)

    print('Num. examples in unlabeled data: %d' % len(unlabeled_data), file=sys.stderr)
    assert len(unlabeled_data) == len(decode_results)
    self_train_examples = []
    for example, hyps in zip(unlabeled_data, decode_results):
        if hyps:
            hyp = hyps[0]
            sampled_example = Example(idx='self_train-%s' % example.idx,
                                      src_sent=example.src_sent,
                                      tgt_code=hyp.code,
                                      tgt_actions=hyp.action_infos,
                                      tgt_ast=hyp.tree)
            self_train_examples.append(sampled_example)
    print('Num. self training examples: %d, Num. labeled examples: %d' % (len(self_train_examples), len(labeled_data)),
          file=sys.stderr)

    train_set = Dataset(examples=labeled_data.examples + self_train_examples)

    print('begin training, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
    print('vocab: %s' % repr(vocab), file=sys.stderr)

    epoch = train_iter = 0
    report_loss = report_examples = 0.
    history_dev_scores = []
    num_trial = patience = 0
    while True:
        epoch += 1
        epoch_begin = time.time()

        for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
            batch_examples = [e for e in batch_examples if len(e.tgt_actions) <= args.decode_max_time_step]

            train_iter += 1
            optimizer.zero_grad()

            loss = -model.score(batch_examples)
            # print(loss.data)
            loss_val = torch.sum(loss).data[0]
            report_loss += loss_val
            report_examples += len(batch_examples)
            loss = torch.mean(loss)

            loss.backward()

            # clip gradient
            if args.clip_grad > 0.:
                grad_norm = torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad)

            optimizer.step()

            if train_iter % args.log_every == 0:
                print('[Iter %d] encoder loss=%.5f' %
                      (train_iter,
                       report_loss / report_examples),
                      file=sys.stderr)

                report_loss = report_examples = 0.

        print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
        # model_file = args.save_to + '.iter%d.bin' % train_iter
        # print('save model to [%s]' % model_file, file=sys.stderr)
        # model.save(model_file)

        # perform validation
        print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
        eval_start = time.time()
        eval_results = evaluation.evaluate(dev_set.examples, model, args, verbose=True)
        dev_acc = eval_results['accuracy']
        print('[Epoch %d] code generation accuracy=%.5f took %ds' % (epoch, dev_acc, time.time() - eval_start), file=sys.stderr)
        is_better = history_dev_scores == [] or dev_acc > max(history_dev_scores)
        history_dev_scores.append(dev_acc)

        if is_better:
            patience = 0
            model_file = args.save_to + '.bin'
            print('save currently the best model ..', file=sys.stderr)
            print('save model to [%s]' % model_file, file=sys.stderr)
            model.save(model_file)
            # also save the optimizers' state
            torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
        elif epoch == args.max_epoch:
            print('reached max epoch, stop!', file=sys.stderr)
            exit(0)
        elif patience < args.patience:
            patience += 1
            print('hit patience %d' % patience, file=sys.stderr)

        if patience == args.patience:
            num_trial += 1
            print('hit #%d trial' % num_trial, file=sys.stderr)
            if num_trial == args.max_num_trial:
                print('early stop!', file=sys.stderr)
                exit(0)

            # decay lr, and restore from previously best checkpoint
            lr = optimizer.param_groups[0]['lr'] * args.lr_decay
            print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)

            # load model
            params = torch.load(args.save_to + '.bin', map_location=lambda storage, loc: storage)
            model.load_state_dict(params['state_dict'])
            if args.cuda: model = model.cuda()

            # load optimizers
            if args.reset_optimizer:
                print('reset optimizer', file=sys.stderr)
                optimizer = torch.optim.Adam(model.inference_model.parameters(), lr=lr)
            else:
                print('restore parameters of the optimizers', file=sys.stderr)
                optimizer.load_state_dict(torch.load(args.save_to + '.optim.bin'))

            # set new lr
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # reset patience
            patience = 0
示例#4
0
def train(args):
    grammar = ASDLGrammar.from_text(open(args.asdl_file).read())
    transition_system = TransitionSystem.get_class_by_lang(args.lang)(grammar)
    train_set = Dataset.from_bin_file(args.train_file)
    dev_set = Dataset.from_bin_file(args.dev_file)
    vocab = pickle.load(open(args.vocab))

    model = Parser(args, vocab, transition_system)
    model.train()
    if args.cuda: model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    print('begin training, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
    print('vocab: %s' % repr(vocab), file=sys.stderr)

    epoch = train_iter = 0
    report_loss = report_examples = 0.
    history_dev_scores = []
    num_trial = patience = 0
    while True:
        epoch += 1
        epoch_begin = time.time()

        for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
            batch_examples = [e for e in batch_examples if len(e.tgt_actions) <= args.decode_max_time_step]

            train_iter += 1
            optimizer.zero_grad()

            loss = -model.score(batch_examples)
            # print(loss.data)
            loss_val = torch.sum(loss).data[0]
            report_loss += loss_val
            report_examples += len(batch_examples)
            loss = torch.mean(loss)

            loss.backward()

            # clip gradient
            if args.clip_grad > 0.:
                grad_norm = torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad)

            optimizer.step()

            if train_iter % args.log_every == 0:
                print('[Iter %d] encoder loss=%.5f' %
                      (train_iter,
                       report_loss / report_examples),
                      file=sys.stderr)

                report_loss = report_examples = 0.

        print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
        # model_file = args.save_to + '.iter%d.bin' % train_iter
        # print('save model to [%s]' % model_file, file=sys.stderr)
        # model.save(model_file)

        # perform validation
        print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
        eval_start = time.time()
        eval_results = evaluation.evaluate(dev_set.examples, model, args, verbose=True)
        dev_acc = eval_results['accuracy']
        print('[Epoch %d] code generation accuracy=%.5f took %ds' % (epoch, dev_acc, time.time() - eval_start), file=sys.stderr)
        is_better = history_dev_scores == [] or dev_acc > max(history_dev_scores)
        history_dev_scores.append(dev_acc)

        if is_better:
            patience = 0
            model_file = args.save_to + '.bin'
            print('save currently the best model ..', file=sys.stderr)
            print('save model to [%s]' % model_file, file=sys.stderr)
            model.save(model_file)
            # also save the optimizers' state
            torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
        elif epoch == args.max_epoch:
            print('reached max epoch, stop!', file=sys.stderr)
            exit(0)
        elif patience < args.patience:
            patience += 1
            print('hit patience %d' % patience, file=sys.stderr)

        if patience == args.patience:
            num_trial += 1
            print('hit #%d trial' % num_trial, file=sys.stderr)
            if num_trial == args.max_num_trial:
                print('early stop!', file=sys.stderr)
                exit(0)

            # decay lr, and restore from previously best checkpoint
            lr = optimizer.param_groups[0]['lr'] * args.lr_decay
            print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)

            # load model
            params = torch.load(args.save_to + '.bin', map_location=lambda storage, loc: storage)
            model.load_state_dict(params['state_dict'])
            if args.cuda: model = model.cuda()

            # load optimizers
            if args.reset_optimizer:
                print('reset optimizer', file=sys.stderr)
                optimizer = torch.optim.Adam(model.inference_model.parameters(), lr=lr)
            else:
                print('restore parameters of the optimizers', file=sys.stderr)
                optimizer.load_state_dict(torch.load(args.save_to + '.optim.bin'))

            # set new lr
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # reset patience
            patience = 0