class SSD(objectDetector): def __init__(self, classes, class_agnostic, feat_name, feat_list=('conv3', 'conv4'), pretrained = True): super(SSD, self).__init__(classes, class_agnostic, feat_name, feat_list, pretrained) self.FeatExt.feat_layer["conv3"][0].ceil_mode = True ##### Important to set model to eval mode before evaluation #### self.FeatExt.eval() rand_img = torch.Tensor(1, 3, 300, 300) rand_feat = self.FeatExt(rand_img) self.FeatExt.train() n_channels = [f.size(1) for f in rand_feat] self.size = cfg.SCALES[0] self.priors_cfg = self._init_prior_cfg() self.priorbox = PriorBox(self.priors_cfg) self.priors_xywh = Variable(self.priorbox.forward()) self.priors_xywh.detach() self.priors = torch.cat([ self.priors_xywh[:, 0:1] - 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] - 0.5 * self.priors_xywh[:, 3:4], self.priors_xywh[:, 0:1] + 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] + 0.5 * self.priors_xywh[:, 3:4] ], 1) self.priors = self.priors * self.size # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.softmax = nn.Softmax(dim=-1) self.criterion = MultiBoxLoss(self.n_classes) mbox_cfg = [] for i in cfg.SSD.PRIOR_ASPECT_RATIO: mbox_cfg.append(2 * len(i) + 2) self.extra_conv = nn.ModuleList() self.loc = nn.ModuleList() self.conf = nn.ModuleList() # conv 4_3 detector self.loc.append( nn.Conv2d(n_channels[0], mbox_cfg[0] * 4 if self.class_agnostic else mbox_cfg[0] * 4 * self.n_classes , kernel_size=3, padding=1)) self.conf.append(nn.Conv2d(n_channels[0], mbox_cfg[0] * self.n_classes, kernel_size=3, padding=1)) # conv 7 detector self.extra_conv.append(nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, kernel_size=1), nn.ReLU(inplace=True))) self.loc.append(nn.Conv2d(1024, mbox_cfg[1] * 4 if self.class_agnostic else mbox_cfg[1] * 4 * self.n_classes, kernel_size=3, padding=1)) self.conf.append(nn.Conv2d(1024, mbox_cfg[1] * self.n_classes, kernel_size=3, padding=1)) def add_extra_conv(extra_conv, loc, conf, in_c, mid_c, out_c, downsamp, mbox, n_cls, cag): extra_conv.append(nn.Sequential( nn.Conv2d(in_c, mid_c, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(mid_c, out_c, kernel_size=3, stride=2 if downsamp else 1, padding=1 if downsamp else 0), nn.ReLU(inplace=True), )) loc.append(nn.Conv2d(out_c, mbox * 4 if cag else mbox * 4 * n_cls, kernel_size=3, padding=1)) conf.append(nn.Conv2d(out_c, mbox * n_cls, kernel_size=3, padding=1)) add_extra_conv(self.extra_conv, self.loc, self.conf, 1024, 256, 512, True, mbox_cfg[2], self.n_classes, self.class_agnostic) add_extra_conv(self.extra_conv, self.loc, self.conf, 512, 128, 256, True, mbox_cfg[3], self.n_classes, self.class_agnostic) add_extra_conv(self.extra_conv, self.loc, self.conf, 256, 128, 256, False, mbox_cfg[4], self.n_classes, self.class_agnostic) add_extra_conv(self.extra_conv, self.loc, self.conf, 256, 128, 256, False, mbox_cfg[5], self.n_classes, self.class_agnostic) self.iter_counter = 0 def _get_obj_det_result(self, sources): loc = [] conf = [] # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) loc = loc.view(loc.size(0), -1, 4) conf = conf.view(conf.size(0), -1, self.n_classes) return loc, conf def forward(self, data_batch): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ x = data_batch[0] im_info = data_batch[1] gt_boxes = data_batch[2] num_boxes = data_batch[3] if self.training: self.iter_counter += 1 sources = [] s0, x = self.FeatExt(x) s0 = self.L2Norm(s0) sources.append(s0) for m in self.extra_conv: x = m(x) sources.append(x) loc, conf = self._get_obj_det_result(sources) SSD_loss_cls, SSD_loss_bbox = 0, 0 if self.training: predictions = ( loc, conf, self.priors.type_as(loc) ) SSD_loss_bbox, SSD_loss_cls = self.criterion(predictions, gt_boxes, num_boxes) conf = self.softmax(conf) return loc, conf, SSD_loss_bbox, SSD_loss_cls def create_architecture(self): self._init_modules() self._init_weights() def _init_modules(self): pass def _init_weights(self): def weights_init(m): def xavier(param): init.xavier_uniform(param) if isinstance(m, nn.Conv2d): xavier(m.weight.data) m.bias.data.zero_() # initialize newly added layers' weights with xavier method self.extra_conv.apply(weights_init) self.loc.apply(weights_init) self.conf.apply(weights_init) def _init_prior_cfg(self): prior_cfg = { 'min_dim': self.size, 'feature_maps': cfg.SSD.FEATURE_MAPS, 'min_sizes': cfg.SSD.PRIOR_MIN_SIZE, 'max_sizes': cfg.SSD.PRIOR_MAX_SIZE, 'steps': cfg.SSD.PRIOR_STEP, 'aspect_ratios':cfg.SSD.PRIOR_ASPECT_RATIO, 'clip':cfg.SSD.PRIOR_CLIP } return prior_cfg
class SSD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, classes): super(SSD, self).__init__() self.size = cfg.TRAIN.COMMON.INPUT_SIZE self.classes = classes self.num_classes = len(self.classes) self.priors_cfg = self._init_prior_cfg() self.priorbox = PriorBox(self.priors_cfg) self.priors_xywh = Variable(self.priorbox.forward(), volatile=True) self.priors = torch.cat([ self.priors_xywh[:, 0:1] - 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] - 0.5 * self.priors_xywh[:, 3:4], self.priors_xywh[:, 0:1] + 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] + 0.5 * self.priors_xywh[:, 3:4] ], 1) self.priors = self.priors * self.size # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.softmax = nn.Softmax(dim=-1) self._isex = cfg.TRAIN.VMRN.ISEX self.VMRN_rel_op2l = _OP2L(cfg.VMRN.OP2L_POOLING_SIZE, cfg.VMRN.OP2L_POOLING_SIZE, 1.0/8.0, True) self._train_iter_conter = 0 self.criterion = MultiBoxLoss(self.num_classes) def forward(self, x, im_info, gt_boxes, num_boxes, rel_mat): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ self._train_iter_conter += 1 sources = list() loc = list() conf = list() self.batch_size = x.size(0) # apply vgg up to conv4_3 relu if isinstance(self.base, nn.ModuleList): for k,v in enumerate(self.base): x = v(x) else: x = self.base(x) s = self.L2Norm(x) sources.append(s) base_feat = s # apply vgg up to fc7 if isinstance(self.conv5, nn.ModuleList): for k,v in enumerate(self.conv5): x = v(x) else: x = self.conv5(x) sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) loc = loc.view(loc.size(0), -1, 4) conf = conf.view(conf.size(0), -1, self.num_classes) SSD_loss_cls = 0 SSD_loss_bbox = 0 if self.training: predictions = ( loc, conf, self.priors.type_as(loc) ) # targets = torch.cat([gt_boxes[:,:,:4] / self.size, gt_boxes[:,:,4:5]],dim=2) targets = gt_boxes SSD_loss_bbox, SSD_loss_cls = self.criterion(predictions, targets, num_boxes) conf = self.softmax(conf) # online data if self.training: if self._train_iter_conter > cfg.TRAIN.VMRN.ONLINEDATA_BEGIN_ITER: obj_rois, obj_num = self._obj_det(conf, loc, self.batch_size, im_info) obj_rois = obj_rois.type_as(gt_boxes) obj_num = obj_num.type_as(num_boxes) else: obj_rois = torch.FloatTensor([]).type_as(gt_boxes) obj_num = torch.LongTensor([]).type_as(num_boxes) obj_labels = None else: # when testing, this is object detection results # TODO: SUPPORT MULTI-IMAGE BATCH obj_rois, obj_num = self._obj_det(conf, loc, self.batch_size, im_info) if obj_rois.numel() > 0: obj_labels = obj_rois[:, 5] obj_rois = obj_rois[:, :5] obj_rois = obj_rois.type_as(gt_boxes) obj_num = obj_num.type_as(num_boxes) else: # there is no object detected obj_labels = torch.Tensor([]).type_as(gt_boxes).long() obj_rois = obj_rois.type_as(gt_boxes) obj_num = obj_num.type_as(num_boxes) if self.training: # offline data for i in range(self.batch_size): obj_rois = torch.cat([obj_rois, torch.cat([(i * torch.ones(num_boxes[i].item(), 1)).type_as(gt_boxes), (gt_boxes[i][:num_boxes[i]][:, 0:4])], 1) ]) obj_num = torch.cat([obj_num, torch.Tensor([num_boxes[i]]).type_as(obj_num)]) obj_rois = Variable(obj_rois) VMRN_rel_loss_cls = 0 rel_cls_prob = torch.Tensor([]).type_as(obj_rois) if (obj_num > 1).sum().item() > 0: obj_pair_feat = self.VMRN_rel_op2l(base_feat, obj_rois, self.batch_size, obj_num) # obj_pair_feat = obj_pair_feat.detach() obj_pair_feat = self._rel_head_to_tail(obj_pair_feat) rel_cls_score = self.VMRN_rel_cls_score(obj_pair_feat) rel_cls_prob = F.softmax(rel_cls_score) self.rel_batch_size = obj_pair_feat.size(0) if self.training: obj_pair_rel_label = self._generate_rel_labels(obj_rois, gt_boxes, obj_num, rel_mat) obj_pair_rel_label = obj_pair_rel_label.type_as(gt_boxes).long() rel_not_keep = (obj_pair_rel_label == 0) # no relationship is kept if (rel_not_keep == 0).sum().item() > 0: rel_keep = torch.nonzero(rel_not_keep == 0).view(-1) rel_cls_score = rel_cls_score[rel_keep] obj_pair_rel_label = obj_pair_rel_label[rel_keep] obj_pair_rel_label -= 1 VMRN_rel_loss_cls = F.cross_entropy(rel_cls_score, obj_pair_rel_label) else: if (not cfg.TEST.VMRN.ISEX) and cfg.TRAIN.VMRN.ISEX: rel_cls_prob = rel_cls_prob[::2, :] rel_result = None if not self.training: if obj_rois.numel() > 0: pred_boxes = obj_rois.data[:,1:5] pred_boxes[:, 0::2] /= im_info[0][3].item() pred_boxes[:, 1::2] /= im_info[0][2].item() rel_result = (pred_boxes, obj_labels, rel_cls_prob.data) else: rel_result = (obj_rois.data, obj_labels, rel_cls_prob.data) return loc, conf, rel_result, SSD_loss_bbox, SSD_loss_cls, VMRN_rel_loss_cls def _generate_rel_labels(self, obj_rois, gt_boxes, obj_num, rel_mat): obj_pair_rel_label = torch.Tensor(self.rel_batch_size).type_as(gt_boxes).zero_().long() # generate online data labels cur_pair = 0 for i in range(obj_num.size(0)): img_index = i % self.batch_size if obj_num[i] <=1 : continue begin_ind = torch.sum(obj_num[:i]) overlaps = bbox_overlaps(obj_rois[begin_ind:begin_ind + obj_num[i]][:, 1:5], gt_boxes[img_index][:, 0:4]) max_overlaps, max_inds = torch.max(overlaps, 1) for o1ind in range(obj_num[i]): for o2ind in range(o1ind + 1, obj_num[i]): o1_gt = int(max_inds[o1ind].item()) o2_gt = int(max_inds[o2ind].item()) if o1_gt == o2_gt: # skip invalid pairs if self._isex: cur_pair += 2 else: cur_pair += 1 continue # some labels are leaved out when labeling if rel_mat[img_index][o1_gt, o2_gt].item() == 0: if rel_mat[img_index][o2_gt, o1_gt].item() == 3: rel_mat[img_index][o1_gt, o2_gt] = rel_mat[img_index][o2_gt, o1_gt] else: rel_mat[img_index][o1_gt, o2_gt] = 3 - rel_mat[img_index][o2_gt, o1_gt] obj_pair_rel_label[cur_pair] = rel_mat[img_index][o1_gt, o2_gt] cur_pair += 1 if self._isex: # some labels are leaved out when labeling if rel_mat[img_index][o2_gt, o1_gt].item() == 0: if rel_mat[img_index][o1_gt, o2_gt].item() == 3: rel_mat[img_index][o2_gt, o1_gt] = rel_mat[img_index][o1_gt, o2_gt] else: rel_mat[img_index][o2_gt, o1_gt] = 3 - rel_mat[img_index][o1_gt, o2_gt] obj_pair_rel_label[cur_pair] = rel_mat[img_index][o2_gt, o1_gt] cur_pair += 1 return obj_pair_rel_label def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') self.load_state_dict(torch.load(base_file, map_location=lambda storage, loc: storage)) print('Finished!') else: print('Sorry only .pth and .pkl files supported.') def _obj_det(self, conf, loc, batch_size, im_info): det_results = torch.Tensor([]).type_as(loc) obj_num = [] if not self.training: det_labels = torch.Tensor([]).type_as(loc).long() for i in range(batch_size): cur_cls_prob = conf[i:i + 1] cur_bbox_pred = loc[i:i + 1] cur_im_info = im_info[i:i + 1] obj_boxes = self._get_single_obj_det_results(cur_cls_prob, cur_bbox_pred, cur_im_info) obj_num.append(obj_boxes.size(0)) if obj_num[-1] > 0: det_results = torch.cat([det_results, torch.cat([i * torch.ones(obj_boxes.size(0), 1).type_as(det_results), obj_boxes], 1) ], 0) return det_results, torch.LongTensor(obj_num) def _get_single_obj_det_results(self, cls_prob, bbox_pred, im_info): scores = cls_prob.data thresh = 0.05 # filter out low confidence boxes for acceleration results = [] if cfg.TEST.COMMON.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.COMMON.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.COMMON.BBOX_NORMALIZE_STDS).type_as(box_deltas) \ + torch.FloatTensor(cfg.TRAIN.COMMON.BBOX_NORMALIZE_MEANS).type_as(box_deltas) box_deltas = box_deltas.view(1, -1, 4) pred_boxes = bbox_transform_inv(self.priors.type_as(bbox_pred).data, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(self.priors.data, (1, scores.shape[1])) scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() for j in xrange(1, self.num_classes): inds = torch.nonzero(scores[:, j] > thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) cls_boxes = pred_boxes[inds, :] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_dets, cfg.TEST.COMMON.NMS) cls_dets = cls_dets[keep.view(-1).long()] final_keep = torch.nonzero(cls_dets[:, -1] > cfg.TEST.COMMON.OBJ_DET_THRESHOLD).squeeze() result = cls_dets[final_keep] if result.numel()>0 and result.dim() == 1: result = result.unsqueeze(0) # in testing, concat object labels if final_keep.numel() > 0: if self.training: result = result[:,:4] else: result = torch.cat([result[:,:4], j * torch.ones(result.size(0),1).type_as(result)],1) if result.numel() > 0: results.append(result) if len(results): final = torch.cat(results, 0) else: final = torch.Tensor([]).type_as(bbox_pred) return final def create_architecture(self): self._init_modules() def weights_init(m): def xavier(param): init.xavier_uniform(param) if isinstance(m, nn.Conv2d): xavier(m.weight.data) m.bias.data.zero_() # initialize newly added layers' weights with xavier method self.extras.apply(weights_init) self.loc.apply(weights_init) self.conf.apply(weights_init) def _init_prior_cfg(self): prior_cfg = { 'min_dim': self.size, 'feature_maps': cfg.SSD.FEATURE_MAPS, 'min_sizes': cfg.SSD.PRIOR_MIN_SIZE, 'max_sizes': cfg.SSD.PRIOR_MAX_SIZE, 'steps': cfg.SSD.PRIOR_STEP, 'aspect_ratios':cfg.SSD.PRIOR_ASPECT_RATIO, 'clip':cfg.SSD.PRIOR_CLIP } return prior_cfg def resume_iter(self, epoch, iter_per_epoch): self._train_iter_conter = epoch * iter_per_epoch
class _SSD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, classes): super(_SSD, self).__init__() self.size = cfg.TRAIN.COMMON.INPUT_SIZE self.classes = classes self.num_classes = len(self.classes) self.priors_cfg = self._init_prior_cfg() self.priorbox = PriorBox(self.priors_cfg) self.priors_xywh = Variable(self.priorbox.forward()) self.priors_xywh.detach() self.priors = torch.cat([ self.priors_xywh[:, 0:1] - 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] - 0.5 * self.priors_xywh[:, 3:4], self.priors_xywh[:, 0:1] + 0.5 * self.priors_xywh[:, 2:3], self.priors_xywh[:, 1:2] + 0.5 * self.priors_xywh[:, 3:4] ], 1) self.priors = self.priors * self.size # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.softmax = nn.Softmax(dim=-1) self.criterion = MultiBoxLoss(self.num_classes) def forward(self, x, im_info, gt_boxes, num_boxes): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() # apply vgg up to conv4_3 relu if isinstance(self.base, nn.ModuleList): for layer in self.base: x = layer(x) else: x = self.base(x) s = self.L2Norm(x) sources.append(s) # apply vgg up to fc7 for conv in self.SSD_feat_layers: x = conv(x) sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) loc = loc.view(loc.size(0), -1, 4) conf = conf.view(conf.size(0), -1, self.num_classes) if self.training: predictions = ( loc, conf, self.priors.type_as(loc) ) # targets = torch.cat([gt_boxes[:,:,:4] / self.size, gt_boxes[:,:,4:5]],dim=2) targets = gt_boxes SSD_loss_bbox, SSD_loss_cls = self.criterion(predictions, targets, num_boxes) else: SSD_loss_cls = 0 SSD_loss_bbox = 0 conf = self.softmax(conf) return loc, conf, SSD_loss_bbox, SSD_loss_cls def create_architecture(self): self._init_modules() def weights_init(m): def xavier(param): init.xavier_uniform(param) if isinstance(m, nn.Conv2d): xavier(m.weight.data) m.bias.data.zero_() # initialize newly added layers' weights with xavier method self.extras.apply(weights_init) self.loc.apply(weights_init) self.conf.apply(weights_init) def _init_prior_cfg(self): prior_cfg = { 'min_dim': self.size, 'feature_maps': cfg.SSD.FEATURE_MAPS, 'min_sizes': cfg.SSD.PRIOR_MIN_SIZE, 'max_sizes': cfg.SSD.PRIOR_MAX_SIZE, 'steps': cfg.SSD.PRIOR_STEP, 'aspect_ratios':cfg.SSD.PRIOR_ASPECT_RATIO, 'clip':cfg.SSD.PRIOR_CLIP } return prior_cfg