def __init__(self, opt, shared=None): super(TransformerAgent, self).__init__(opt, shared) self.use_cuda = not self.opt.get('no_cuda') and torch.cuda.is_available() if self.use_cuda: torch.cuda.set_device(self.opt['gpu']) torch.set_grad_enabled(False) model_config = get_model_config() self.vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path) self.reply_checker = ReplyChecker(correct_generative=self.opt['correct_generative'], split_into_sentences=self.opt['split_into_sentences']) self.replace_repeat = self.opt['replace_repeat'] self.replace_ngram = self.opt['replace_ngram'] self.ngram_size = self.opt['ngram_size'] self.detokenize = self.opt['detokenize'] self.emoji_prob = self.opt['emoji_prob'] self.add_questions = self.opt['add_questions'] self.beam_size = self.opt['beam_size'] self.clean_emoji = self.opt['clean_emoji'] self.check_grammar = self.opt['check_grammar'] # 'max_seq_len': 128, # 'beam_size': 1, # 'diversity_coef': 0, # 'diversity_groups': 1, # 'annealing_topk': None, # 'annealing': 0, # 'length_penalty': 0.6, if self.opt['annealing_topk'] is not None: assert self.opt['annealing_topk'] >= self.opt['beam_size'] assert self.opt['diversity_coef'] >= 0 assert self.opt['beam_size'] % self.opt['diversity_groups'] == 0 if shared is None: self.model = TransformerModel(n_layers=model_config.n_layers, n_embeddings=len(self.vocab), n_pos_embeddings=model_config.n_pos_embeddings, embeddings_size=model_config.embeddings_size, padding_idx=self.vocab.pad_id, n_heads=model_config.n_heads, dropout=model_config.dropout, embed_dropout=model_config.embed_dropout, attn_dropout=model_config.attn_dropout, ff_dropout=model_config.ff_dropout, bos_id=self.vocab.bos_id, eos_id=self.vocab.eos_id, max_seq_len=self.opt['max_seq_len'], beam_size=self.opt['beam_size'], length_penalty=self.opt['length_penalty'], n_segments=model_config.n_segments, sample=self.opt['sample'], annealing_topk=self.opt['annealing_topk'], annealing=self.opt['annealing'], diversity_coef=self.opt['diversity_coef'], diversity_groups=self.opt['diversity_groups']) self.retrieval_bot = RetrievalBot() state_dict = torch.load(model_config.checkpoint_path, map_location=lambda storage, loc: storage) if 'model' in state_dict: state_dict = state_dict['model'] self.model.load_state_dict(state_dict) print('Weights loaded from {}'.format(model_config.checkpoint_path)) if self.use_cuda: self.model = self.model.cuda() self.model.eval() else: self.model = shared['model'] self.retrieval_bot = shared['retrieval'] self.reset()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--local_rank', type=int, default=-1, help="Distributed training.") parser.add_argument('--server_ip', type=str, default='', help="Used for debugging on GPU machine.") parser.add_argument('--server_port', type=str, default='', help="Used for debugging on GPU machine.") args = parser.parse_args() logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.ERROR) logger = logging.getLogger(__file__) if args.server_ip and args.server_port and args.local_rank in [-1, 0]: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() model_config = get_model_config() trainer_config = get_trainer_config() # Log only on main process if args.local_rank not in [-1, 0]: sys.stdout = open(f"./runs/log_distributed_{args.local_rank}", "w") # dump sdtout writer = DummyWriter() else: writer = SummaryWriter(comment=trainer_config.writer_comment) logger.info("model config: {}".format(model_config)) logger.info("trainer config: {}".format(trainer_config)) log_dir = writer.log_dir interrupt_checkpoint_path = os.path.join( log_dir, trainer_config.interrupt_checkpoint_path) last_checkpoint_path = os.path.join(log_dir, trainer_config.last_checkpoint_path) logger.info( "Logging to {}".format(log_dir) ) # Let's save everything on an experiment in the ./runs/XXX/directory if args.local_rank in [-1, 0]: with open(os.path.join(log_dir, "model_config.json"), "w") as f: json.dump(model_config, f) with open(os.path.join(log_dir, "trainer_config.json"), "w") as f: json.dump(trainer_config, f) set_seed(trainer_config.seed) device = torch.device(trainer_config.device) vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path, zero_shot=trainer_config.zero_shot) transformer = TransformerModel( n_layers=model_config.n_layers, n_embeddings=len(vocab), n_pos_embeddings=model_config.n_pos_embeddings, embeddings_size=model_config.embeddings_size, padding_idx=vocab.pad_id, n_heads=model_config.n_heads, dropout=model_config.dropout, embed_dropout=model_config.embed_dropout, attn_dropout=model_config.attn_dropout, ff_dropout=model_config.ff_dropout, normalize_embeddings=model_config.normalize_embeddings, bos_id=vocab.bos_id, eos_id=vocab.eos_id, sent_dialog_id=vocab.sent_dialog_id, max_seq_len=model_config.max_seq_len, beam_size=model_config.beam_size, length_penalty=model_config.length_penalty, n_segments=model_config.n_segments, annealing_topk=model_config.annealing_topk, annealing=model_config.annealing, diversity_coef=model_config.diversity_coef, diversity_groups=model_config.diversity_groups, multiple_choice_head=model_config.multiple_choice_head, constant_embedding=model_config.constant_embedding, single_input=model_config.single_input, dialog_embeddings=model_config.dialog_embeddings, share_models=model_config.share_models, successive_attention=model_config.successive_attention, sparse_embeddings=model_config.sparse_embeddings, shared_attention=model_config.shared_attention, bs_temperature=model_config.bs_temperature, bs_nucleus_p=model_config.bs_nucleus_p, vocab=None) # for beam search debugging if not trainer_config.load_last: load_openai_weights(transformer.transformer_module, trainer_config.openai_parameters_dir, n_special_tokens=vocab.n_special_tokens) if not model_config.share_models: load_openai_weights(transformer.encoder_module, trainer_config.openai_parameters_dir, n_special_tokens=vocab.n_special_tokens) logger.info('OpenAI weights loaded from {}, model shared: {}'.format( trainer_config.openai_parameters_dir, model_config.share_models)) logger.info('loading datasets') train_dataset = FacebookDataset( trainer_config.train_datasets, vocab, max_lengths=(transformer.n_pos_embeddings - 1) // (3 if model_config.single_input else 1), # A bit restrictive here dialog_embeddings=model_config.dialog_embeddings, cache=trainer_config.train_datasets_cache, use_start_end=model_config.use_start_end, negative_samples=trainer_config.negative_samples, augment=trainer_config.persona_augment, aug_syn_proba=trainer_config.persona_aug_syn_proba, limit_size=trainer_config.limit_train_size) test_dataset = FacebookDataset( trainer_config.test_datasets, vocab, max_lengths=(transformer.n_pos_embeddings - 1) // (3 if model_config.single_input else 1), # A bit restrictive here dialog_embeddings=model_config.dialog_embeddings, cache=trainer_config.test_datasets_cache, use_start_end=model_config.use_start_end, negative_samples=-1, # Keep all negative samples augment=False, aug_syn_proba=0.0, limit_size=trainer_config.limit_eval_size) logger.info( f'train dataset {len(train_dataset)} test dataset {(test_dataset)}') if args.local_rank != -1: torch.cuda.set_device(args.local_rank) device = torch.device('cuda', args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') transformer.distribute(device) model_trainer = Trainer( transformer, train_dataset, writer, test_dataset, train_batch_size=trainer_config.train_batch_size, batch_split=trainer_config.batch_split, test_batch_size=trainer_config.test_batch_size, lr=trainer_config.lr, lr_warmup=trainer_config.lr_warmup, weight_decay=trainer_config.weight_decay, s2s_weight=trainer_config.s2s_weight, lm_weight=trainer_config.lm_weight, risk_weight=trainer_config.risk_weight, hits_weight=trainer_config.hits_weight, single_input=model_config.single_input, n_jobs=trainer_config.n_jobs, clip_grad=trainer_config.clip_grad, device=device, ignore_idxs=vocab.special_tokens_ids, local_rank=args.local_rank, apex_level=model_config.apex_level, apex_loss_scale=trainer_config.apex_loss_scale, linear_schedule=trainer_config.linear_schedule, n_epochs=trainer_config.n_epochs, evaluate_full_sequences=trainer_config.evaluate_full_sequences) if trainer_config.load_last: state_dict = torch.load(trainer_config.load_last, map_location=device) model_trainer.load_state_dict(state_dict) logger.info('Weights loaded from {}'.format(trainer_config.load_last)) # helpers ----------------------------------------------------- def external_metrics_func(full_references, full_predictions, epoch, metric=None): references_file_path = os.path.join( writer.log_dir, trainer_config.eval_references_file + "_{}".format(epoch)) predictions_file_path = os.path.join( writer.log_dir, trainer_config.eval_predictions_file + "_{}".format(epoch)) with open(references_file_path, 'w', encoding='utf-8') as f: f.write(unicode('\n'.join(full_references))) with open(predictions_file_path, 'w', encoding='utf-8') as f: f.write(unicode('\n'.join(full_predictions))) if metric is not None: return specified_nlp_metric([references_file_path], predictions_file_path, metric) nist, bleu, meteor, entropy, div, avg_len = nlp_metrics( [references_file_path], predictions_file_path) metrics = {'meteor': meteor, 'avg_len': avg_len} for name, metric in (('nist', nist), ('entropy', entropy), ('div', div), ('bleu', bleu)): for i, m in enumerate(metric, 1): metrics['{}_{}'.format(name, i)] = m return metrics def save_func(epoch): if epoch != -1: torch.save(model_trainer.state_dict(), last_checkpoint_path) def sample_text_func(epoch): n_samples = 0 model_trainer.model.eval() samples_idxs = random.sample(range(len(test_dataset)), n_samples) samples = [test_dataset[idx] for idx in samples_idxs] for persona_info, dialog, target, _ in samples: contexts = [ torch.tensor([c], dtype=torch.long, device=model_trainer.device) for c in [persona_info, dialog] if len(c) > 0 ] prediction = model_trainer.model.predict(contexts)[0] persona_info_str = vocab.ids2string(persona_info[1:-1]) dialog_str = vocab.ids2string(dialog) dialog_str = dialog_str.replace(vocab.talker1_bos, '\n\t- ').replace( vocab.talker2_bos, '\n\t- ') dialog_str = dialog_str.replace(vocab.talker1_eos, '').replace(vocab.talker2_eos, '') target_str = vocab.ids2string(target[1:-1]) prediction_str = vocab.ids2string(prediction) logger.info('\n') logger.info('Persona info:\n\t{}'.format(persona_info_str)) logger.info('Dialog:{}'.format(dialog_str)) logger.info('Target:\n\t{}'.format(target_str)) logger.info('Prediction:\n\t{}'.format(prediction_str)) def test_func(epoch): if (epoch + 1) % trainer_config.test_period == 0: metric_funcs = {'f1_score': f1_score} model_trainer.test(metric_funcs, external_metrics_func, epoch) def f1_risk(predictions, targets): scores = f1_score(predictions, targets, average=False) assert all([0 <= s <= 1.0 for s in scores]) return [1 - s for s in scores] def get_risk_metric_func(risk_metric): """ risk_metric selected in: f1, meteor, avg_len, nist_{1, 2, 3, 4}, entropy_{1, 2, 3, 4}, div_{1, 2}, bleu_{1, 2, 3, 4} """ def external_metric_risk(predictions, targets): string_targets = list(vocab.ids2string(t) for t in targets) string_predictions = list(vocab.ids2string(t) for t in predictions) metrics = [ external_metrics_func([t], [p], epoch=-1, metric=risk_metric) for p, t in zip(string_predictions, string_targets) ] if any([s in risk_metric for s in ['entropy', 'nist', 'avg_len']]): return [-m for m in metrics] assert all([0 <= s <= 1.0 for s in metrics]), metrics return [1 - m for m in metrics] if risk_metric == 'f1': return f1_risk return external_metric_risk # helpers ----------------------------------------------------- try: model_trainer.train( after_epoch_funcs=[save_func, sample_text_func, test_func], risk_func=get_risk_metric_func(trainer_config.risk_metric)) except (KeyboardInterrupt, Exception, RuntimeError) as e: if args.local_rank in [-1, 0]: torch.save(model_trainer.state_dict(), interrupt_checkpoint_path) raise e
else: dialog_idx = int(line[:space_idx]) if int(dialog_idx) == 1: data.append({'persona_info': [], 'dialog': []}) dialog_line = line[space_idx + 1:].split('\t') dialog_line = [l.strip() for l in dialog_line] if dialog_line[0].startswith('your persona:'): persona_info = dialog_line[0].replace('your persona: ', '') data[-1]['persona_info'].append(persona_info) elif len(dialog_line) > 1: data[-1]['dialog'].append(dialog_line[0]) data[-1]['dialog'].append(dialog_line[1]) def make_dataset(data, vocab, max_lengths): dataset = [] for chat in data: persona_info = [vocab.string2ids(s) for s in chat['persona_info']] dialog = [vocab.string2ids(s) for s in chat['dialog']] if len(dialog) % 2 == 1: dialog = dialog[:-1] dataset.append((persona_info, dialog)) return dataset vocab = BPEVocab.from_files('./parameters/bpe.vocab', './parameters/bpe.vocab') data_updated =make_dataset(data, vocab, 511)
def main(): model_config = get_model_config() trainer_config = get_trainer_config() set_seed(trainer_config.seed) device = torch.device(trainer_config.device) vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path) transformer = TransformerModel( n_layers=model_config.n_layers, n_embeddings=len(vocab), n_pos_embeddings=model_config.n_pos_embeddings, embeddings_size=model_config.embeddings_size, padding_idx=vocab.pad_id, n_heads=model_config.n_heads, dropout=model_config.dropout, embed_dropout=model_config.embed_dropout, attn_dropout=model_config.attn_dropout, ff_dropout=model_config.ff_dropout, bos_id=vocab.bos_id, eos_id=vocab.eos_id, max_seq_len=model_config.max_seq_len, beam_size=model_config.beam_size, length_penalty=model_config.length_penalty, n_segments=model_config.n_segments, annealing_topk=model_config.annealing_topk, annealing=model_config.annealing, diversity_coef=model_config.diversity_coef, diversity_groups=model_config.diversity_groups) if not trainer_config.load_last: load_openai_weights(transformer.transformer_module, trainer_config.openai_parameters_dir, n_special_tokens=vocab.n_special_tokens) print('OpenAI weights loaded from {}'.format( trainer_config.openai_parameters_dir)) train_dataset = FacebookDataset(trainer_config.train_datasets, vocab, transformer.n_pos_embeddings - 1) test_dataset = FacebookDataset(trainer_config.test_datasets, vocab, transformer.n_pos_embeddings - 1) model_trainer = Trainer(transformer, train_dataset, test_dataset, batch_size=trainer_config.batch_size, batch_split=trainer_config.batch_split, lr=trainer_config.lr, lr_warmup=trainer_config.lr_warmup, lm_weight=trainer_config.lm_weight, risk_weight=trainer_config.risk_weight, n_jobs=trainer_config.n_jobs, clip_grad=trainer_config.clip_grad, device=device, ignore_idxs=vocab.special_tokens_ids) if trainer_config.load_last: state_dict = torch.load(trainer_config.last_checkpoint_path, map_location=device) model_trainer.load_state_dict(state_dict) print('Weights loaded from {}'.format( trainer_config.last_checkpoint_path)) # helpers ----------------------------------------------------- def save_func(epoch): torch.save(model_trainer.state_dict(), trainer_config.last_checkpoint_path) def sample_text_func(epoch): n_samples = 5 samples_idxs = random.sample(range(len(test_dataset)), n_samples) samples = [test_dataset[idx] for idx in samples_idxs] for persona_info, dialog, target in samples: contexts = [ torch.tensor([c], dtype=torch.long, device=model_trainer.device) for c in [persona_info, dialog] if len(c) > 0 ] prediction = model_trainer.model.predict(contexts)[0] persona_info_str = vocab.ids2string(persona_info[1:-1]) dialog_str = vocab.ids2string(dialog) dialog_str = dialog_str.replace(vocab.talker1_bos, '\n\t- ').replace( vocab.talker2_bos, '\n\t- ') dialog_str = dialog_str.replace(vocab.talker1_eos, '').replace(vocab.talker2_eos, '') target_str = vocab.ids2string(target[1:-1]) prediction_str = vocab.ids2string(prediction) print('\n') print('Persona info:\n\t{}'.format(persona_info_str)) print('Dialog:{}'.format(dialog_str)) print('Target:\n\t{}'.format(target_str)) print('Prediction:\n\t{}'.format(prediction_str)) def test_func(epoch): if (epoch + 1) % trainer_config.test_period == 0: metric_funcs = {'f1_score': f1_score} model_trainer.test(metric_funcs) def f1_risk(predictions, targets): scores = f1_score(predictions, targets, average=False) return [1 - s for s in scores] # helpers ----------------------------------------------------- try: model_trainer.train( trainer_config.n_epochs, after_epoch_funcs=[save_func, sample_text_func, test_func], risk_func=f1_risk) except (KeyboardInterrupt, Exception, RuntimeError) as e: torch.save(model_trainer.state_dict(), trainer_config.interrupt_checkpoint_path) raise e
def __init__(self, opt, shared=None): super(TransformerAgent, self).__init__(opt, shared) self.use_cuda = not self.opt.get('no_cuda') and torch.cuda.is_available() if self.use_cuda: torch.cuda.set_device(self.opt['gpu']) torch.set_grad_enabled(False) model_config = get_model_config() self.vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path) self.dialog_embeddings = model_config.dialog_embeddings self.use_start_end = model_config.use_start_end self.single_input = model_config.single_input self.apex_level = model_config.apex_level # 'max_seq_len': 128, # 'beam_size': 1, # 'diversity_coef': 0, # 'diversity_groups': 1, # 'annealing_topk': None, # 'annealing': 0, # 'length_penalty': 0.6, self.vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path) if self.opt['annealing_topk'] is not None: assert self.opt['annealing_topk'] > self.opt['beam_size'] assert self.opt['diversity_coef'] >= 0 assert self.opt['beam_size'] % self.opt['diversity_groups'] == 0 if shared is None: self.model = TransformerModel(n_layers=model_config.n_layers, n_embeddings=len(self.vocab), n_pos_embeddings=model_config.n_pos_embeddings, embeddings_size=model_config.embeddings_size, padding_idx=self.vocab.pad_id, n_heads=model_config.n_heads, dropout=model_config.dropout, embed_dropout=model_config.embed_dropout, attn_dropout=model_config.attn_dropout, ff_dropout=model_config.ff_dropout, bos_id=self.vocab.bos_id, eos_id=self.vocab.eos_id, sent_dialog_id=self.vocab.sent_dialog_id, max_seq_len=self.opt['max_seq_len'], beam_size=self.opt['beam_size'], length_penalty=self.opt['length_penalty'], n_segments=model_config.n_segments, sample=self.opt['sample'], annealing_topk=self.opt['annealing_topk'], annealing=self.opt['annealing'], diversity_coef=self.opt['diversity_coef'], diversity_groups=self.opt['diversity_groups'], normalize_embeddings=model_config.normalize_embeddings, multiple_choice_head=model_config.multiple_choice_head, constant_embedding=model_config.constant_embedding, vocab=self.vocab, single_input=model_config.single_input, dialog_embeddings=model_config.dialog_embeddings, share_models=model_config.share_models, successive_attention=model_config.successive_attention, sparse_embeddings=model_config.sparse_embeddings, shared_attention=model_config.sparse_embeddings, bs_temperature=model_config.bs_temperature, bs_nucleus_p=model_config.bs_nucleus_p ) state_dict = torch.load(model_config.checkpoint_path, map_location=lambda storage, loc: storage) if 'model' in state_dict: state_dict = state_dict['model'] self.model.load_state_dict(state_dict) print('Weights loaded from {}'.format(model_config.checkpoint_path)) if self.use_cuda: self.model = self.model.cuda() self.model.eval() self.model = apex_model(self.model, apex_level=self.apex_level) else: self.model = shared['model'] self.reset()
def get_trainer(): model_config = get_model_config() trainer_config = get_trainer_config() set_seed(trainer_config.seed) device = torch.device(trainer_config.device) vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path) transformer = TransformerModel( n_layers=model_config.n_layers, n_embeddings=len(vocab), n_pos_embeddings=model_config.n_pos_embeddings, embeddings_size=model_config.embeddings_size, padding_idx=vocab.pad_id, n_heads=model_config.n_heads, dropout=model_config.dropout, embed_dropout=model_config.embed_dropout, attn_dropout=model_config.attn_dropout, ff_dropout=model_config.ff_dropout, bos_id=vocab.bos_id, eos_id=vocab.eos_id, max_seq_len=model_config.max_seq_len, beam_size=model_config.beam_size, length_penalty=model_config.length_penalty, n_segments=model_config.n_segments, annealing_topk=model_config.annealing_topk, annealing=model_config.annealing, diversity_coef=model_config.diversity_coef, diversity_groups=model_config.diversity_groups) if not trainer_config.load_last: load_openai_weights(transformer.transformer_module, trainer_config.openai_parameters_dir, n_special_tokens=vocab.n_special_tokens) print('OpenAI weights loaded from {}'.format( trainer_config.openai_parameters_dir)) train_dataset = FacebookDataset(trainer_config.train_datasets, vocab, transformer.n_pos_embeddings - 1) test_dataset = FacebookDataset(trainer_config.test_datasets, vocab, transformer.n_pos_embeddings - 1) model_trainer = Trainer(transformer, train_dataset, test_dataset, batch_size=trainer_config.batch_size, batch_split=trainer_config.batch_split, lr=trainer_config.lr, lr_warmup=trainer_config.lr_warmup, lm_weight=trainer_config.lm_weight, risk_weight=trainer_config.risk_weight, n_jobs=trainer_config.n_jobs, clip_grad=trainer_config.clip_grad, device=device, ignore_idxs=vocab.special_tokens_ids) if trainer_config.load_last: state_dict = torch.load(trainer_config.last_checkpoint_path, map_location=device) model_trainer.load_state_dict(state_dict) print('Weights loaded from {}'.format( trainer_config.last_checkpoint_path)) return model_trainer