示例#1
0
    args.cuda = False
elif args.cuda:
    torch.cuda.manual_seed(args.seed)

model_file_list = [
    'saved_models/01', 'saved_models/02', 'saved_models/03', 'saved_models/04',
    'saved_models/00'
]

prob_list = []
for j in range(len(model_file_list)):
    model_file = model_file_list[j] + '/' + args.model
    print("Loading model from {}".format(model_file))
    opt = torch_utils.load_config(model_file)  # 加载超参数
    trainer = GCNTrainer(opt)  # 定义模型
    trainer.load(model_file)  # 加载最好模型
    # load vocab
    vocab_file = model_file_list[j] + '/vocab.pkl'
    vocab = Vocab(vocab_file, load=True)
    assert opt[
        'vocab_size'] == vocab.size, "Vocab size must match that in the saved model."

    # load data
    data_file = opt['data_dir'] + '/{}.json'.format(args.dataset)
    print("Loading data from {} with batch size {}...".format(
        data_file, opt['batch_size']))
    batch = DataLoader(data_file,
                       opt['batch_size'],
                       opt,
                       vocab,
                       evaluation=True)
示例#2
0
    header="# epoch\ttrain_loss\tdev_loss\tdev_score\tbest_dev_score")

# print model info
helper.print_config(opt)

# model
if not opt['load']:
    trainer = GCNTrainer(opt, emb_matrix=emb_matrix)
else:
    # load pretrained model
    model_file = opt['model_file']
    print("Loading model from {}".format(model_file))
    model_opt = torch_utils.load_config(model_file)
    model_opt['optim'] = opt['optim']
    trainer = GCNTrainer(model_opt)
    trainer.load(model_file)

id2label = dict([(v, k) for k, v in label2id.items()])
dev_score_history = []
current_lr = opt['lr']

global_step = 0
global_start_time = time.time()
format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'
max_steps = len(train_batch) * opt['num_epoch']

# start training
for epoch in range(1, opt['num_epoch'] + 1):
    train_loss = 0
    for i, batch in enumerate(train_batch):
        start_time = time.time()
示例#3
0
    header="# epoch\ttrain_loss\tdev_loss\tdev_score\tbest_dev_score")

# print model info
helper.print_config(opt)

# model
if not opt['load']:
    trainer = GCNTrainer(opt, emb_matrix=emb_matrix)
else:
    # load pretrained model
    model_file = opt['model_file']
    print("Loading model from {}".format(model_file))
    model_opt = torch_utils.load_config(model_file)
    model_opt['optim'] = opt['optim']
    trainer = GCNTrainer(model_opt)
    trainer.load(model_file)

id2label = dict([(v, k) for k, v in label2id.items()])
dev_score_history = []
current_lr = opt['lr']
lr_change = True

global_step = 0
global_start_time = time.time()
format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'
max_steps = len(train_batch) * opt['num_epoch']

writer = SummaryWriter()
# start training
for epoch in range(1, opt['num_epoch'] + 1):
    train_loss = 0