示例#1
0
def train_audio():

	# compute receptive field width
	learnable_steps = 1
	batch_size = 1
	num_layers = len(params.residual_conv_channels)
	receptive_steps_per_unit = params.residual_conv_filter_width ** num_layers
	receptive_steps = (receptive_steps_per_unit - 1) * params.residual_num_blocks + 1
	target_width = learnable_steps
	input_width = receptive_steps
	# to compute all learnable targets
	input_width += learnable_steps - 1
	## padding for causal conv block
	input_width += len(params.causal_conv_channels)

	quantized_signal = np.mod(np.arange(1, input_width * 10), params.quantization_steps)
	print quantized_signal

	for rep in xrange(300):
		sum_loss = 0
		for train in xrange(50):
			# create batch
			input_batch, target_batch = create_batch(quantized_signal, batch_size, input_width, target_width)

			# convert to 1xW image whose #channels is equal to the quantization steps of audio
			# input_batch.shape = (BATCHSIZE, CHANNELS(=quantization_steps), HEIGHT(=1), WIDTH(=input_width))
			input_batch = data.onehot_pixel_image(input_batch, quantization_steps=params.quantization_steps)

			# training
			## causal block
			output = wavenet.forward_causal_block(input_batch)
			## remove causal padding
			output = wavenet.slice_1d(output, len(params.causal_conv_channels))
			## residual dilated conv block
			output, sum_skip_connections = wavenet.forward_residual_block(output)
			## remove unnecessary elements
			sum_skip_connections = wavenet.slice_1d(sum_skip_connections, sum_skip_connections.data.shape[3] - target_width)
			## softmax block
			## Note: do not apply F.softmax
			output = wavenet.forward_softmax_block(sum_skip_connections, softmax=False)
			## compute cross entroy
			loss = wavenet.cross_entropy(output, target_batch)
			## update weights
			wavenet.backprop(loss)

			sum_loss += float(loss.data)

		print sum_loss / 50.0
		wavenet.save(args.model_dir)
示例#2
0
def train_audio():

    target_width = 4
    padded_input_width = 8 + 3 + 1
    batch_size = 8

    quantized_signal = np.mod(
        np.arange(1, padded_input_width * batch_size * 4), 6)
    # pad with zero
    quantized_signal = np.insert(quantized_signal,
                                 0,
                                 np.ones((padded_input_width, ),
                                         dtype=np.int32),
                                 axis=0)
    print quantized_signal

    for rep in xrange(50):
        for step in xrange(10):
            padded_signal_batch, target_batch = create_batch(
                quantized_signal, batch_size, padded_input_width, target_width)

            padded_onehot_batch = data.onehot_pixel_image(
                padded_signal_batch,
                quantized_channels=params.quantization_steps)

            # print padded_signal_batch[0, -1]
            # print padded_onehot_batch[0, :, 0, -1]
            # print target_batch[0, -1]

            output = wavenet.forward_causal_block(padded_onehot_batch)
            output = wavenet.slice_1d(output, 1)
            output, sum_skip_connections = wavenet.forward_residual_block(
                output)
            sum_skip_connections = wavenet.slice_1d(
                sum_skip_connections, output.data.shape[3] - target_width)
            output = wavenet.forward_softmax_block(sum_skip_connections,
                                                   softmax=False)
            loss = wavenet.cross_entropy(output, target_batch)
            wavenet.backprop(loss)

        loss = float(loss.data)
        print loss

    wavenet.save(args.model_dir)
示例#3
0
def train_audio():
    # compute required input width
    num_layers = len(params.residual_conv_channels)
    receptive_width_per_unit = params.residual_conv_filter_width**num_layers
    receptive_width = (receptive_width_per_unit -
                       1) * params.residual_num_blocks + 1
    # padding for causal conv block
    causal_padding = len(params.causal_conv_channels)

    # quantized_signal = np.mod(np.arange(1, 100), 6)
    quantized_signal = np.repeat(np.arange(0, 10), 100, axis=0)
    # quantized_signal = np.random.randint(0, params.quantization_steps, 1000)
    original_signal_width = quantized_signal.size
    quantized_signal = np.insert(quantized_signal,
                                 0,
                                 np.full((receptive_width + causal_padding, ),
                                         0,
                                         dtype=np.int32),
                                 axis=0)

    target_width = original_signal_width // 20
    batch_size = 2

    for epoch in xrange(100):
        sum_loss = 0
        for step in xrange(500):
            input_batch, target_batch = create_batch(
                quantized_signal, batch_size, receptive_width + causal_padding,
                target_width)

            padded_onehot_batch = data.onehot_pixel_image(
                input_batch, quantization_steps=params.quantization_steps)

            # convert to 1xW image whose #channels is equal to the quantization steps of audio
            # input_batch.shape = (BATCHSIZE, CHANNELS(=quantization_steps), HEIGHT(=1), WIDTH(=input_width))
            input_batch = data.onehot_pixel_image(
                input_batch, quantization_steps=params.quantization_steps)

            # training
            ## causal block
            output = wavenet.forward_causal_block(input_batch)
            ## remove causal padding
            # output = wavenet.slice_1d(output, len(params.causal_conv_channels))
            ## residual dilated conv block
            output, sum_skip_connections = wavenet.forward_residual_block(
                output)
            ## remove unnecessary elements
            sum_skip_connections = wavenet.slice_1d(
                sum_skip_connections,
                sum_skip_connections.data.shape[3] - target_width)
            ## softmax block
            ## Note: do not apply F.softmax
            output = wavenet.forward_softmax_block(sum_skip_connections,
                                                   apply_softmax=False)

            ## compute cross entroy
            loss = wavenet.cross_entropy(output, target_batch)
            ## update weights
            wavenet.backprop(loss)
            sum_loss += float(loss.data)
        print epoch, sum_loss
        wavenet.save(args.model_dir)
示例#4
0
def train_audio(
    filename,
    batch_size=16,
    learnable_steps=16,
    save_per_update=500,
    train_steps_ratio=0.05,
):

    # load audio data
    path_to_file = args.wav_dir + "/" + filename
    quantized_signal, sampling_rate = data.load_audio_file(
        path_to_file, quantization_steps=params.quantization_steps)

    # compute receptive field width
    num_layers = len(params.residual_conv_channels)
    receptive_steps_per_unit = params.residual_conv_filter_width**num_layers
    receptive_steps = (receptive_steps_per_unit -
                       1) * params.residual_num_blocks + 1
    receptive_msec = int(receptive_steps * 1000.0 / sampling_rate)
    target_width = learnable_steps
    input_width = receptive_steps
    # to compute all learnable targets
    input_width += learnable_steps - 1
    ## padding for causal conv block
    input_width += len(params.causal_conv_channels)

    # for logging
    num_updates = 0
    total_updates = 0
    sum_loss_epoch = 0
    sum_loss = 0
    start_time = time.time()
    prev_averate_loss = None
    max_batches = max(
        int((quantized_signal.size - input_width) / float(batch_size) *
            train_steps_ratio), 1)

    # print "training", filename
    # print "	sampling rate:", sampling_rate, "[Hz]"
    # print "	length:", quantized_signal.size, "[step]"
    # print "	batch_size:", batch_size
    # print "	learnable_steps:", learnable_steps

    # pad with zero
    quantized_signal = np.insert(quantized_signal,
                                 0,
                                 np.zeros((input_width, ), dtype=np.int32),
                                 axis=0)

    sum_loss_epoch = 0
    sum_loss = 0
    start_time = time.time()
    for batch_index in xrange(1, max_batches + 1):
        # create batch
        input_batch, target_batch = create_batch(quantized_signal, batch_size,
                                                 input_width, target_width)

        # convert to 1xW image whose #channels is equal to the quantization steps of audio
        # input_batch.shape = (BATCHSIZE, CHANNELS(=quantization_steps), HEIGHT(=1), WIDTH(=input_width))
        input_batch = data.onehot_pixel_image(
            input_batch, quantization_steps=params.quantization_steps)

        # training
        ## causal block
        output = wavenet.forward_causal_block(input_batch)
        ## remove causal padding
        output = wavenet.slice_1d(output, len(params.causal_conv_channels))
        ## residual dilated conv block
        output, sum_skip_connections = wavenet.forward_residual_block(output)
        ## remove unnecessary elements
        sum_skip_connections = wavenet.slice_1d(
            sum_skip_connections,
            sum_skip_connections.data.shape[3] - target_width)
        ## softmax block
        ## Note: do not apply F.softmax
        output = wavenet.forward_softmax_block(sum_skip_connections,
                                               softmax=False)
        ## compute cross entroy
        loss = wavenet.cross_entropy(output, target_batch)
        ## update weights
        wavenet.backprop(loss)

        # logging
        loss = float(loss.data)
        sum_loss_epoch += loss
        sum_loss += loss
        total_updates += 1

        # save the model
        if total_updates % save_per_update == 0:
            wavenet.save(dir=args.model_dir)

    wavenet.save(dir=args.model_dir)
    average_loss = sum_loss / float(max_batches)
    sys.stdout.flush()

    return average_loss
示例#5
0
def train_audio(
    filename,
    batch_size=16,
    train_width=16,
    repeat=1000,
):

    # load audio data
    path_to_file = args.wav_dir + "/" + filename
    signals, sampling_rate = data.load_audio_file(
        path_to_file, quantization_steps=params.quantization_steps)

    # receptive width
    num_layers = len(params.residual_conv_channels)
    receptive_width_per_unit = params.residual_conv_filter_width**num_layers
    receptive_width = (receptive_width_per_unit -
                       1) * params.residual_num_blocks + 1
    receptive_msec = int(receptive_width * 1000.0 / sampling_rate)

    # receptive field width
    input_width = receptive_width
    # padding for causal conv block
    input_width += len(params.causal_conv_channels)

    # for logging
    num_updates = 0
    total_updates = 0
    sum_loss = 0
    prev_average_loss = None

    # pad with silence signals
    signals = np.insert(signals,
                        0,
                        np.full((input_width, ), 127, dtype=np.int32),
                        axis=0)

    with chainer.using_config("train", True):
        for batch_index in xrange(0, repeat):
            # create batch
            input_batch, target_batch = create_batch(signals, batch_size,
                                                     input_width, train_width)

            # convert to 1xW image whose #channels is equal to the quantization steps of audio
            # input_batch.shape = (BATCHSIZE, CHANNELS(=quantization_steps), HEIGHT(=1), WIDTH(=input_width))
            input_batch = data.onehot_pixel_image(
                input_batch, quantization_steps=params.quantization_steps)

            # training
            ## causal block
            output = wavenet.forward_causal_block(input_batch)
            ## remove causal padding
            # output = wavenet.slice_1d(output, len(params.causal_conv_channels))
            ## residual dilated conv block
            output, sum_skip_connections = wavenet.forward_residual_block(
                output)
            ## remove unnecessary elements
            output = wavenet.slice_1d(output,
                                      output.data.shape[3] - train_width)
            sum_skip_connections = wavenet.slice_1d(
                sum_skip_connections,
                sum_skip_connections.data.shape[3] - train_width)
            ## softmax block
            ## Note: do not apply F.softmax
            output = wavenet.forward_softmax_block(sum_skip_connections,
                                                   apply_softmax=False)
            ## compute cross entroy
            loss = wavenet.cross_entropy(output, target_batch)
            ## update weights
            wavenet.backprop(loss)

            # logging
            sum_loss += float(loss.data)
            total_updates += 1

            if batch_index % 10 == 0:
                sys.stdout.write("\r	{} - {} width; {}/{}".format(
                    stdout.BOLD + filename + stdout.END, signals.size,
                    batch_index, repeat))
                sys.stdout.flush()

    wavenet.save(args.model_dir)
    return sum_loss