def main(args): # process input file input_file = util.ensure_local_file(args['train_file']) user_map, item_map, tr_sparse, test_sparse = model.create_test_and_train_sets( args, input_file, args['data_type']) # train model output_row, output_col = model.train_model(args, tr_sparse) # save trained model to job directory if args['data_type'] == 'user_ratings': model.save_model_json(args, user_map, item_map, output_row, output_col) user_items_w = model.get_user_items_w(input_file) model.save_user_items_w(args, user_items_w) else: model.save_model(args, user_map, item_map, output_row, output_col) # log results train_rmse = wals.get_rmse(output_row, output_col, tr_sparse) test_rmse = wals.get_rmse(output_row, output_col, test_sparse) if args['hypertune']: # write test_rmse metric for hyperparam tuning util.write_hptuning_metric(args, test_rmse) tf.logging.info('train RMSE = %.2f' % train_rmse) tf.logging.info('test RMSE = %.2f' % test_rmse)
def main(args): tf.logging.set_verbosity(tf.logging.INFO) # input files input_file = util.ensure_local_file(args.train_file) user_map, item_map, tr_sparse, test_sparse = model.create_test_and_train_sets( input_file) # train model output_row, output_col = model.train_model(args, tr_sparse) # save trained model to job directory model.save_model(args, user_map, item_map, output_row, output_col) # log results test_rmse = wals.get_rmse(output_row, output_col, test_sparse) util.write_hptuning_metric(args, test_rmse)
def main(args): # process input file input_file = util.ensure_local_file(args['train_files'][0]) user_map, item_map, tr_sparse, test_sparse = model.create_test_and_train_sets( args, input_file, args['data_type']) # train model output_row, output_col = model.train_model(args, tr_sparse) # save trained model to job directory model.save_model(args, user_map, item_map, output_row, output_col) # log results train_rmse = wals.get_rmse(output_row, output_col, tr_sparse) test_rmse = wals.get_rmse(output_row, output_col, test_sparse) if args['hypertune']: # write test_rmse metric for hyperparam tuning util.write_hptuning_metric(args, test_rmse) tf.logging.info('train RMSE = %.2f' % train_rmse) tf.logging.info('test RMSE = %.2f' % test_rmse)