def experiment3(delt=1.5, numIter=30, low=100, high=600, step=100, numTrain=30000, numTest=10000): print "experiment 3" dimDict = {} for numCovs in np.arange(low,high+step,step): print " numCovs=", numCovs datgen = dc.DataSim(nCovariates=numCovs, nHeterogenous=1, delta=np.array([[delt]])) datmodel=mdl.simModel(generator=datgen) data=[] for i in np.arange(0,numIter): print " iter=",i Xtrain, Ztrain, Ytrain = datmodel.generate(numTrain) datmodel.train(Xtrain, Ztrain, Ytrain) Xtest, Ztest, Ytest = datmodel.generate(numTest) accuracy, h1, h2 = datmodel.test(Xtest,Ztest,Ytest) errs,avgerrs,stderrs = datmodel.getMeansError() data.append((accuracy,avgerrs,h1,h2,datmodel)) datmodel.regenerate() #re-generate the coefficients dimDict[numCovs]=data return dimDict
def experiment(args): nPatients = args[0] nDims = args[1] nSparse = args[2] nHeter = args[3] heterMeans = args[4] #delta nIters = args[5] nTest = args[6] Bayes = args[7] datgen = dc.DataSim(nCovariates=nDims, nHeterogenous=nHeter, delta=heterMeans) #needs sparsity datmodel = mdl.simModel(generator = datgen, BIC = Bayes)
def experiment1(numIter=30, numTrain=30000, numTest=10000): print "experiment 1" deltaDict = {} for delt in np.arange(-3.0,3.5,0.5): print " delta=",delt datgen = dc.DataSim(nCovariates=100, nHeterogenous=1, delta=np.array([[delt]])) datmodel = mdl.simModel(generator = datgen) data = [] for i in np.arange(0,numIter): print " iter=",i Xtrain, Ztrain, Ytrain = datmodel.generate(numTrain) datmodel.train(Xtrain, Ztrain, Ytrain) Xtest, Ztest, Ytest = datmodel.generate(numTest) accuracy, h1, h2 = datmodel.test(Xtest,Ztest,Ytest) errs,avgerrs,stderrs = datmodel.getMeansError() data.append((accuracy,avgerrs,h1,h2,datmodel)) datmodel.regenerate() #re-generate the coefficients deltaDict[delt]=data return deltaDict