def get_model(model_str, placeholders, numView, num_features, num_nodes, num_clusters): #model = None if model_str == 'arga_ae': model = ARGA(placeholders, numView, num_features, num_clusters) elif model_str == 'arga_vae': model = ARVGA(placeholders, num_features, num_nodes, features_nonzero) return model
def get_model(model_str, placeholders, num_features, num_nodes, features_nonzero): discriminator = Discriminator() d_real = discriminator.construct(placeholders['real_distribution']) model = None if model_str == 'arga_ae': model = ARGA(placeholders, num_features, features_nonzero) elif model_str == 'arga_vae': model = ARVGA(placeholders, num_features, num_nodes, features_nonzero) return d_real, discriminator, model