def main():
  rnd_seed = None
  if rnd_seed:
    torch.manual_seed(rnd_seed)
    np.random.seed(rnd_seed)


  # ---------------------------------------
  #           DATA LOADING
  # ---------------------------------------
  #result_path = "../result_lrn_0p001_rl/"

  dict_file = "../dataset/German/vocab1.de"
  entity_file = "../dataset/German/vocab1.en"
  index2word = get_index2word(dict_file)
  index2label = get_index2label(entity_file)
  vocab_size = len(index2word)
  label_size = len(index2label)

  train_X, train_Y = minibatch_of_one_de('train')
  val_X, val_Y = minibatch_of_one_de('valid')
  test_X, test_Y = minibatch_of_one_de('test')

  # ---------------------------------------
  #           HYPER PARAMETERS
  # ---------------------------------------
  # Using word2vec pre-trained embedding
  #word_embedding_dim = 300

  hidden_dim = 64
  label_embedding_dim = 8
  max_epoch = 100
  # 0.001 is a good value
  ner_learning_rate = 0.001

  pretrained = 'de64'
  word_embedding_dim = 64

  # ---------------------------------------
  #           GPU OR NOT?
  # ---------------------------------------
  gpu = False
  if gpu and rnd_seed:
    torch.cuda.manual_seed(rnd_seed)

  # ---------------------------------------
  #        MODEL INSTANTIATION
  # ---------------------------------------
  #attention = None
  attention = "fixed"

  load_model_dir = "../result_lrn_0p001_atten/"
  load_model_filename = os.path.join(load_model_dir, "ckpt_46.pth")

  batch_size = 1
  machine = ner(word_embedding_dim, hidden_dim, label_embedding_dim, vocab_size,
                label_size, learning_rate=ner_learning_rate,
                minibatch_size=batch_size, max_epoch=max_epoch, train_X=None,
                train_Y=None, val_X=val_X, val_Y=val_Y, test_X=test_X,
                test_Y=test_Y, attention=attention, gpu=gpu,
                pretrained=pretrained, load_model_filename=load_model_filename,
                load_map_location="cpu")
  if gpu:
    machine = machine.cuda()

  initial_beam_size = 3
  # When you have only one beam, it does not make sense to consider
  # max_beam_size larger than the size of your label vocabulary
  max_beam_size = label_size

  # ============   INIT RL =====================

  parser = argparse.ArgumentParser(description='A3C')

  parser.add_argument('--logdir', default='../result_lrn_0p001_atten_rl',
                      help='name of logging directory')
  parser.add_argument('--lr', type=float, default=0.0001,
                      help='learning rate (default: 0.0001)')
  parser.add_argument('--gamma', type=float, default=0.99,
                      help='discount factor for rewards (default: 0.99)')
  parser.add_argument('--n_epochs', type=int, default=2,
                      help='number of epochs for training agent(default: 30)')
  parser.add_argument('--entropy-coef', type=float, default=0.01,
                      help='entropy term coefficient (default: 0.01)')
  parser.add_argument('--num-processes', type=int, default=2,
                      help='how many training processes to use (default: 4)')
  parser.add_argument('--num-steps', type=int, default=20,
                      help='number of forward steps in A3C (default: 20)')

  parser.add_argument('--tau', type=float, default=1.00,
                      help='parameter for GAE (default: 1.00)')
  parser.add_argument('--value-loss-coef', type=float, default=0.5,
                      help='value loss coefficient (default: 0.5)')
  parser.add_argument('--max-grad-norm', type=float, default=5,
                      help='value loss coefficient (default: 5)')
  parser.add_argument('--seed', type=int, default=1,
                      help='random seed (default: 1)')
  parser.add_argument('--max-episode-length', type=int, default=1000000,
                      help='maximum length of an episode (default: 1000000)')
  parser.add_argument('--name', default='train',
                      help='name of the process')
  parser.add_argument('--no-shared', default=False,
                      help='use an optimizer without shared momentum.')
  args = parser.parse_args()

  if not os.path.exists(args.logdir):
    os.mkdir(args.logdir)

  # For German dataset, f_score_index_begin = 5 (because O_INDEX = 4)
  # For toy dataset, f_score_index_begin = 4 (because {0: '<s>', 1: '<e>', 2: '<p>', 3: '<u>', ...})
  f_score_index_begin = 5
  # RL reward coefficient
  reward_coef_fscore = 1
  reward_coef_beam_size = 0.1

  logfile = open(os.path.join(args.logdir, "eval_test.txt"), "w+")

  model = AdaptiveActorCritic(max_beam_size=max_beam_size, action_space=3)
  # Marking as for evaluation
  model.eval()

  load_map_location = "cpu"

  for epoch in range(0, args.n_epochs):
    load_model_filename = os.path.join(args.logdir, "ckpt_" + str(epoch) + ".pth")
    checkpoint = torch.load(load_model_filename, map_location=load_map_location)
    model.load_state_dict(checkpoint["state_dict"])

    fscore, total_beam_number_in_dataset, avg_beam_size, time_used = \
      eval_adaptive(machine,
                    max_beam_size,
                    model,
                    test_X, test_Y, index2word, index2label,
                    "test", False, "adaptive", initial_beam_size,
                    reward_coef_fscore, reward_coef_beam_size,
                    f_score_index_begin,
                    args)

    log_msg = "%d\t%f\t%d\t%f\t%f" % (epoch, fscore, total_beam_number_in_dataset, avg_beam_size, time_used)
    print(log_msg)
    print(log_msg, file=logfile, flush=True)
  # End for epoch

  logfile.close()
示例#2
0
def main():
  rnd_seed = None
  if rnd_seed:
    torch.manual_seed(rnd_seed)
    np.random.seed(rnd_seed)


  # ---------------------------------------
  #           DATA LOADING
  # ---------------------------------------
  #result_path = "../result_lrn_0p001_rl/"

  dict_file = "../dataset/CCGbank/dict_word"
  entity_file = "../dataset/CCGbank/dict_tag"
  index2word = get_index2word(dict_file)
  index2label = get_index2label(entity_file)
  vocab_size = len(index2word)
  label_size = len(index2label)

  #train_X, train_Y = minibatch_of_one_de('train')
  val_X, val_Y = minibatch_of_one_de('val')
  test_X, test_Y = minibatch_of_one_de('test')

  # ---------------------------------------
  #           HYPER PARAMETERS
  # ---------------------------------------
  # Using word2vec pre-trained embedding
  word_embedding_dim = 300

  hidden_dim = 512
  label_embedding_dim = 512
  max_epoch = 30
  # 0.001 is a good value
  ner_learning_rate = 0.001

  pretrained = None

  # ---------------------------------------
  #           GPU OR NOT?
  # ---------------------------------------
  gpu = True
  if gpu and rnd_seed:
    torch.cuda.manual_seed(rnd_seed)

  # ---------------------------------------
  #        MODEL INSTANTIATION
  # ---------------------------------------
  #attention = None
  attention = "fixed"

  load_model_dir = "../result_ccg_lrn_0p001_atten/"
  load_model_filename = os.path.join(load_model_dir, "ckpt_11.pth")

  batch_size = 1
  machine = ner(word_embedding_dim, hidden_dim, label_embedding_dim, vocab_size,
                label_size, learning_rate=ner_learning_rate,
                minibatch_size=batch_size, max_epoch=max_epoch, train_X=None,
                train_Y=None, val_X=val_X, val_Y=val_Y, test_X=test_X,
                test_Y=test_Y, attention=attention, gpu=gpu,
                pretrained=pretrained, load_model_filename=load_model_filename)
  if gpu:
    machine = machine.cuda()

  initial_beam_size = 3
  # When you have only one beam, it does not make sense to consider
  # max_beam_size larger than the size of your label vocabulary
  max_beam_size = 10

  # ============   INIT RL =====================
  os.environ['OMP_NUM_THREADS'] = '4'
  #os.environ['CUDA_VISIBLE_DEVICES'] = ""


  parser = argparse.ArgumentParser(description='A3C')

  parser.add_argument('--logdir', default='../result_ccg_atten_ckpt_11_rl_lrn_0p001_reward_0p02_beam_3_gpu',
                      help='name of logging directory')
  parser.add_argument('--lr', type=float, default=0.001,
                      help='learning rate (default: 0.0001)')
  parser.add_argument('--gamma', type=float, default=0.99,
                      help='discount factor for rewards (default: 0.99)')
  parser.add_argument('--n_epochs', type=int, default=50,
                      help='number of epochs for training agent(default: 30)')
  parser.add_argument('--entropy-coef', type=float, default=0.01,
                      help='entropy term coefficient (default: 0.01)')
  parser.add_argument('--num-processes', type=int, default=1,
                      help='how many training processes to use (default: 4)')
  parser.add_argument('--num-steps', type=int, default=20,
                      help='number of forward steps in A3C (default: 20)')

  parser.add_argument('--tau', type=float, default=1.00,
                      help='parameter for GAE (default: 1.00)')
  parser.add_argument('--value-loss-coef', type=float, default=0.5,
                      help='value loss coefficient (default: 0.5)')
  parser.add_argument('--max-grad-norm', type=float, default=5,
                      help='value loss coefficient (default: 5)')
  parser.add_argument('--seed', type=int, default=1,
                      help='random seed (default: 1)')
  parser.add_argument('--max-episode-length', type=int, default=1000000,
                      help='maximum length of an episode (default: 1000000)')
  parser.add_argument('--name', default='test',
                      help='name of the process')
  parser.add_argument('--no-shared', default=False,
                      help='use an optimizer without shared momentum.')
  args = parser.parse_args()

  if not os.path.exists(args.logdir):
    os.mkdir(args.logdir)

  shared_model = AdaptiveActorCritic(max_beam_size=max_beam_size,
                                     action_space=3)
  #shared_model.share_memory()
  shared_model.eval()  

  if args.no_shared:
    shared_optimizer = None
  # default here (False)
  else:
    shared_optimizer = SharedAdam(params=shared_model.parameters(),
                                  lr=args.lr)
    # optimizer = optim.Adam(shared_model.parameters(), lr=learning_rate)
    shared_optimizer.share_memory()

  # --------------------------------------------
  #                 RL TRAINING
  # --------------------------------------------
  # For German dataset, f_score_index_begin = 5 (because O_INDEX = 4)
  # For toy dataset, f_score_index_begin = 4 (because {0: '<s>', 1: '<e>', 2: '<p>', 3: '<u>', ...})
  # For CCG dataset, f_score_index_begin = 2 (because {0: _PAD, 1: _SOS, ...})
  f_score_index_begin = 2
  # RL reward coefficient
  reward_coef_fscore = 1
  reward_coef_beam_size = 0.02

  load_map_location = "cpu"

  logfile = open(os.path.join(args.logdir, "eval_test.txt"), "w+")
  for epoch in range(0, args.n_epochs):
    print("Eval for epoch {}".format(epoch))
    load_model_filename = os.path.join(args.logdir, "ckpt_" + str(epoch) + ".pth")
    checkpoint = torch.load(load_model_filename, map_location=load_map_location)
    shared_model.load_state_dict(checkpoint["state_dict"])
   
    print("\tEval now...")
    fscore, total_beam_number_in_dataset, avg_beam_size, time_used = \
        eval_adaptive(
                 machine,
                 max_beam_size,
                 shared_model,
                 test_X, test_Y, index2word, index2label,
                 "test", args.name, "adaptive", initial_beam_size,
                 reward_coef_fscore, reward_coef_beam_size,
                 f_score_index_begin,
                 args)
    log_msg = "%d\t%f\t%d\t%f\t%f" % (epoch, fscore, total_beam_number_in_dataset, avg_beam_size, time_used)
    print(log_msg)
    logfile.write(log_msg + '\n')
    logfile.flush()

  logfile.close() 
示例#3
0
def test_adaptive(
    rank,
    machine,
    max_beam_size,
    lr,
    shared_model,
    counter,
    eval_data_X,
    eval_data_Y,
    index2word,
    index2label,
    suffix,
    result_path,
    decode_method,
    beam_size,
    reward_coef_fscore,
    reward_coef_beam_size,
    f_score_index_begin,
    args,
):
    torch.manual_seed(123 + rank)

    # create adative model
    model = AdaptiveActorCritic(max_beam_size=max_beam_size, action_space=3)
    model.eval()

    batch_num = len(eval_data_X)
    instance_num = 0
    beam_size_seqs = []

    for batch in eval_data_X:
        instance_num += len(batch)

    for epoch in range(1, args.n_epochs + 1):
        print("Epoch: {} of {} (rank{})".format(epoch, args.name, rank))

        desc = result_path + '_process_' + args.name + '_' + str(epoch) + '_'
        if result_path:
            f_sen = open(
                os.path.join(args.logdir, desc + "sen_" + suffix + ".txt"),
                'w')
            f_pred = open(
                os.path.join(args.logdir, desc + "pred_" + suffix + ".txt"),
                'w')
            f_label = open(
                os.path.join(args.logdir, desc + "label_" + suffix + ".txt"),
                'w')
            f_result_processed = \
              open(os.path.join(args.logdir,
                                desc + "result_processed_" + suffix + ".txt"), 'w')
            f_beam_size = \
              open(os.path.join(args.logdir,
                                desc + 'beam_size_' + suffix + ".txt"), 'w')

        # for calculating F-SCORE
        true_pos_count = 0
        pred_pos_count = 0
        true_pred_pos_count = 0

        for batch_idx in range(batch_num):
            if (batch_idx + 1) % 200 == 0:
                print("Batch {}/{}".format(batch_idx + 1, batch_num))

            sen = eval_data_X[batch_idx]
            label = eval_data_Y[batch_idx]

            current_batch_size = len(sen)
            current_sen_len = len(sen[0])

            # DEBUG
            # print(batch_idx, current_sen_len)
            if current_sen_len < 3:
                continue

            sen_var = Variable(torch.LongTensor(sen))
            label_var = Variable(torch.LongTensor(label))

            if machine.gpu:
                sen_var = sen_var.cuda()
                label_var = label_var.cuda()

            # Initialize the hidden and cell states
            # The axes semantics are
            # (num_layers * num_directions, batch_size, hidden_size)
            # So 1 for single-directional LSTM encoder,
            # 2 for bi-directional LSTM encoder.
            init_enc_hidden = Variable(
                torch.zeros((2, current_batch_size, machine.hidden_dim)))
            init_enc_cell = Variable(
                torch.zeros((2, current_batch_size, machine.hidden_dim)))

            if machine.gpu:
                init_enc_hidden = init_enc_hidden.cuda()
                init_enc_cell = init_enc_cell.cuda()

            enc_hidden_seq, (enc_hidden_out, enc_cell_out) = machine.encode(
                sen_var, init_enc_hidden, init_enc_cell)

            # The semantics of enc_hidden_out is (num_layers * num_directions,
            # batch, hidden_size), and it is "tensor containing the hidden state
            # for t = seq_len".
            #
            # Here we use a linear layer to transform the two-directions of the dec_hidden_out's into a single hidden_dim vector, to use as the input of the decoder
            init_dec_hidden = machine.enc2dec_hidden(
                torch.cat([enc_hidden_out[0], enc_hidden_out[1]], dim=1))
            init_dec_cell = machine.enc2dec_cell(
                torch.cat([enc_cell_out[0], enc_cell_out[1]], dim=1))

            # ===================================
            if decode_method == "adaptive":
                # the input argument "beam_size" serves as initial_beam_size here
                # TODO: implement this here
                label_pred_seq, accum_logP_pred_seq, logP_pred_seq, \
                attention_pred_seq, episode, sen_beam_size_seq= \
                  decode_one_sentence_adaptive_rl(machine,
                  current_sen_len, init_dec_hidden, init_dec_cell, enc_hidden_seq,
                  beam_size, max_beam_size, model, shared_model, reward_coef_fscore,
                  reward_coef_beam_size, label_var, f_score_index_begin, counter,
                  args)

            else:
                raise Exception("Not implemented!")
            # ===================================

            # update beam seq
            beam_size_seqs += sen_beam_size_seq

            ### Debugging...
            # print("input sentence =", sen)
            # print("true label =", label)
            # print("predicted label =", label_pred_seq)
            # print("episode =", episode)

            for label_index in range(f_score_index_begin, machine.label_size):
                true_pos = (label_var == label_index)
                true_pos_count += true_pos.float().sum()

                pred_pos = (label_pred_seq == label_index)
                pred_pos_count += pred_pos.float().sum()

                true_pred_pos = true_pos & pred_pos
                true_pred_pos_count += true_pred_pos.float().sum()

            # Write result into file
            if result_path:
                if machine.gpu:
                    label_pred_seq = label_pred_seq.cpu()

                label_pred_seq = label_pred_seq.data.numpy().tolist()

                # Here label_pred_seq.shape = (batch size, sen len)

                # sen, label, label_pred_seq are list of lists,
                # thus I would like to flatten them for iterating easier

                sen = list(itertools.chain.from_iterable(sen))
                label = list(itertools.chain.from_iterable(label))
                label_pred_seq = list(
                    itertools.chain.from_iterable(label_pred_seq))
                assert len(sen) == len(label) and len(label) == len(
                    label_pred_seq)
                for i in range(len(sen)):
                    f_sen.write(str(sen[i]) + '\n')
                    f_label.write(str(label[i]) + '\n')
                    f_pred.write(str(label_pred_seq[i]) + '\n')

                    # clean version (does not print <PAD>, print a newline instead of <EOS>)
                    # if sen[i] != 0 and sen[i] != 2: # not <PAD> and not <EOS>
                    # if sen[i] != 0: # not <PAD>

                    result_sen = index2word[sen[i]]
                    result_label = index2label[label[i]]
                    result_pred = index2label[label_pred_seq[i]]
                    f_result_processed.write(
                        "%s %s %s\n" % (result_sen, result_label, result_pred))
                    f_sen.flush()
                    f_label.flush()
                    f_pred.flush()
                    f_result_processed.flush()

                if decode_method == "adaptive":
                    beam_size_seq_str = ' '.join(map(str, sen_beam_size_seq))
                    f_beam_size.write(beam_size_seq_str + '\n')
                    f_beam_size.flush()

        # End for batch_idx

        if machine.gpu:
            true_pos_count = true_pos_count.cpu()
            pred_pos_count = pred_pos_count.cpu()
            true_pred_pos_count = true_pred_pos_count.cpu()

        true_pos_count = true_pos_count.data.numpy()[0]
        pred_pos_count = pred_pos_count.data.numpy()[0]
        true_pred_pos_count = true_pred_pos_count.data.numpy()[0]

        precision = true_pred_pos_count / pred_pos_count if pred_pos_count > 0 else 0

        recall = true_pred_pos_count / true_pos_count if true_pos_count > 0 else 0
        fscore = 2 / (1 / precision + 1 / recall) if (precision > 0
                                                      and recall > 0) else 0
        fscore = fscore * 100

        if result_path:
            f_sen.close()
            f_pred.close()
            f_label.close()
            f_result_processed.close()
            f_beam_size.close()

        avg_beam_sizes = sum(beam_size_seqs) / float(len(beam_size_seqs))
        print("Epoch {}: Avg {} beam size: {} (rank{})".format(
            epoch, args.name, avg_beam_sizes, rank))
        print("Epoch {}: Avg {} Fscore = {} (rank{})".format(
            epoch, args.name, fscore, rank))