示例#1
0
    if args.gpu >= 0:
        cuda.get_device(args.gpu).use()
        model.to_gpu()

    #optimizer
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    mistake_list = []

    for xs, ys, ys_dep_tag, word, is_verb in test_data:
        xs = cuda.to_gpu(xs)
        xs = Variable(xs)
        with chainer.using_config('train', False):
            pred_ys = model.traverse([xs])
        pred_ys = [F.softmax(pred_y) for pred_y in pred_ys]
        pred_ys = [pred_y.data.argmax(axis=0)[1] for pred_y in pred_ys]
        pred_ys = int(pred_ys[0])
        ys = ys.argmax()
        item_type = return_item_type(ys, ys_dep_tag)
        case_num['all'] += 1
        case_num[item_type] += 1
        if pred_ys == ys:
            correct_num['all'] += 1
            correct_num[item_type] += 1

        item_type = return_item_type(ys, [])
        pred_item_type = return_item_type(pred_ys, [])
        confusion_matrix[item_type][pred_item_type] += 1
示例#2
0
def predict(model_path, test_data, type_statistics_dict, domain, case):
    confusion_matrix = defaultdict(dict)

    feature_size = test_data[0][0].shape[1]

    model = BiLSTMBase(input_size=feature_size,
                       output_size=feature_size,
                       n_labels=2,
                       n_layers=1,
                       dropout=0.2,
                       type_statistics_dict=type_statistics_dict)

    serializers.load_npz(model_path, model)

    correct_num = {
        'all': 0.,
        '照応なし': 0.,
        '文内': 0.,
        '文内(dep)': 0.,
        '文内(zero)': 0.,
        '発信者': 0.,
        '受信者': 0.,
        '項不定': 0.
    }
    case_num = {
        'all': 0.,
        '照応なし': 0.,
        '文内': 0.,
        '文内(dep)': 0.,
        '文内(zero)': 0.,
        '発信者': 0.,
        '受信者': 0.,
        '項不定': 0.
    }
    accuracy = {
        'all': 0.,
        '照応なし': 0.,
        '文内': 0.,
        '文内(dep)': 0.,
        '文内(zero)': 0.,
        '発信者': 0.,
        '受信者': 0.,
        '項不定': 0.
    }

    for key1 in correct_num.keys():
        for key2 in correct_num.keys():
            confusion_matrix[key1][key2] = 0

    cuda.get_device(0).use()
    model.to_gpu()

    mistake_list = []

    for xs, ys, ys_dep_tag, zs, word, is_verb in test_data:
        xs = cuda.to_gpu(xs)
        xs = Variable(xs)
        with chainer.using_config('train', False):
            pred_ys = model.traverse([xs], [zs])

        pred_ys = [F.softmax(pred_y) for pred_y in pred_ys]

        pred_ys = pred_ys[0].data.argmax(axis=0)[1]

        ys = ys.argmax()
        item_type = return_item_type(ys, ys_dep_tag)
        case_num['all'] += 1
        case_num[item_type] += 1
        if pred_ys == ys:
            correct_num['all'] += 1
            correct_num[item_type] += 1

        item_type = return_item_type(ys, [])
        pred_item_type = return_item_type(pred_ys, [])
        confusion_matrix[item_type][pred_item_type] += 1

        if pred_ys != ys:
            if item_type == '文内':
                item_type = ys - 4
            if pred_item_type == '文内':
                pred_item_type = pred_ys - 4
            sentence = ''.join(
                word[4:is_verb]) + '"' + word[is_verb:is_verb +
                                              1] + '"' + ''.join(
                                                  word[is_verb + 1:])
            mistake_list.append(
                [item_type, pred_item_type, is_verb - 4, sentence])

    correct_num['文内'] = correct_num['文内(dep)'] + correct_num['文内(zero)']
    case_num['文内'] = case_num['文内(dep)'] + case_num['文内(zero)']

    for key in accuracy:
        if case_num[key]:
            accuracy[key] = correct_num[key] / case_num[key] * 100
        else:
            accuracy[key] = 999

    output_path = './' + 'predict'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    dump_path = '{0}/domain-{1}_caes-{2}.tsv'.format(output_path, domain, case)
    print('model_path:{0}_domain:{1}_accuracy:{2:.2f}'.format(
        'majority', domain, accuracy['all']))
    if not os.path.exists(dump_path):
        with open(dump_path, 'a') as f:
            f.write(
                'model_path\tdomain\taccuracy(全体)\taccuracy(照応なし)\taccuracy(発信者)\taccuracy(受信者)\taccuracy(項不定)\taccuracy(文内)\taccuracy(文内(dep))\taccuracy(文内(zep))\ttest_data_size\n'
            )
    with open(dump_path, 'a') as f:
        f.write(
            '{0}\t{1}\t{2:.2f}\t{3:.2f}\t{4:.2f}\t{5:.2f}\t{6:.2f}\t{7:.2f}\t{8:.2f}\t{9:.2f}\t{10}\n'
            .format('majority', domain, accuracy['all'], accuracy['照応なし'],
                    accuracy['発信者'], accuracy['受信者'], accuracy['項不定'],
                    accuracy['文内'], accuracy['文内(dep)'], accuracy['文内(zero)'],
                    len(test_data)))

    output_path = './' + 'confusion_matrix'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    dump_path = '{0}/domain-{1}_case-{2}.tsv'.format(output_path, domain, case)
    with open(dump_path, 'w') as f:
        f.write('model_path\t' + 'majority' + '\n')
        f.write(' \t \t予測結果\n')
        f.write(' \t \t照応なし\t発信者\t受信者\t項不定\t文内\tsum(全体)\n実際の分類結果')
        for case_type in ['照応なし', '発信者', '受信者', '項不定', '文内']:
            f.write(' \t{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\n'.format(
                case_type, confusion_matrix[case_type]['照応なし'],
                confusion_matrix[case_type]['発信者'],
                confusion_matrix[case_type]['受信者'],
                confusion_matrix[case_type]['項不定'],
                confusion_matrix[case_type]['文内'], case_num[case_type]))
        f.write('\n')

    output_path = './' + 'mistake_sentence'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    output_path = '{0}/domain-{1}_case-{2}'.format(output_path, domain, case)
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    dump_path = '{0}/model-{1}.txt'.format(output_path, 'majority')
    with open(dump_path, 'a') as f:
        f.write('model_path\t' + 'majority' + '\n')
        f.write('正解位置\t予測位置\t述語位置\t文\n')
        for mistake in mistake_list:
            mistake = [str(i) for i in mistake]
            f.write('\t'.join(mistake))
            f.write('\n')