示例#1
0
class Sampler():
    def __init__(self, z_dim=8, c_dim=1, scale=10.0, net_size=32):
        self.cppn = CPPN(z_dim=z_dim,
                         c_dim=c_dim,
                         scale=scale,
                         net_size=net_size)
        self.z = self.generate_z(
        )  # saves most recent z here, in case we find a nice image and want the z-vec

    def reinit(self):
        self.cppn.reinit()

    def generate_z(self):
        z = np.random.uniform(-1.0, 1.0,
                              size=(1, self.cppn.z_dim)).astype(np.float32)
        return z

    def generate(self, z=None, x_dim=1080, y_dim=1060, scale=10.0):
        if z is None:
            z = self.generate_z()
        else:
            z = np.reshape(z, (1, self.cppn.z_dim))
        self.z = z
        return self.cppn.generate(z, x_dim, y_dim, scale)[0]

    def show_image(self, image_data):
        '''
    image_data is a tensor, in [height width depth]
    image_data is NOT the PIL.Image class
    '''
        plt.subplot(1, 1, 1)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            plt.imshow(image_data, interpolation='nearest')
        else:
            plt.imshow(image_data.reshape(y_dim, x_dim),
                       cmap='Greys',
                       interpolation='nearest')
        plt.axis('off')
        plt.show()

    def save_png(self, image_data, filename):
        img_data = np.array(1 - image_data)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            img_data = np.array(img_data.reshape(
                (y_dim, x_dim, c_dim)) * 255.0,
                                dtype=np.uint8)
        else:
            img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0,
                                dtype=np.uint8)
        im = Image.fromarray(img_data)
        im.save(filename)

    def to_image(self, image_data):
        # convert to PIL.Image format from np array (0, 1)
        img_data = np.array(1 - image_data)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            img_data = np.array(img_data.reshape(
                (y_dim, x_dim, c_dim)) * 255.0,
                                dtype=np.uint8)
        else:
            img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0,
                                dtype=np.uint8)
        im = Image.fromarray(img_data)
        return im

    def to_anim_images(self, z1, z2, n_frame = 10, duration1 = 0.5, \
                      duration2 = 1.0, duration = 0.1, x_dim = 512, y_dim = 512, scale = 10.0, reverse = True):
        '''
    this saves an animated gif from two latent states z1 and z2
    n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2
    duration1, duration2, control how long z1 and z2 are shown.  duration controls frame speed, in seconds
    '''
        delta_z = (z2 - z1) / (n_frame + 1)
        total_frames = n_frame + 2
        images = []
        for i in range(total_frames):
            z = z1 + delta_z * float(i)
            images.append(self.to_image(self.generate(z, x_dim, y_dim, scale)))
            print("processing image ", i)
        durations = [duration1] + [duration] * n_frame + [duration2]
        if reverse == True:  # go backwards in time back to the first state
            revImages = list(images)
            revImages.reverse()
            revImages = revImages[1:]
            images = images + revImages
            durations = durations + [duration] * n_frame + [duration1]
        return images, durations
示例#2
0
class Sampler():
  def __init__(self, z_dim = 8, c_dim = 1, scale = 10.0, net_size = 32):
    self.cppn = CPPN(z_dim = z_dim, c_dim = c_dim, scale = scale, net_size = net_size)
    self.z = self.generate_z() # saves most recent z here, in case we find a nice image and want the z-vec
  def reinit(self):
    self.cppn.reinit()
  def generate_z(self):
    z = np.random.uniform(-1.0, 1.0, size=(1, self.cppn.z_dim)).astype(np.float32)
    return z
  def generate(self, z=None, x_dim=1080, y_dim=1060, scale = 10.0):
    if z is None:
      z = self.generate_z()
    else:
      z = np.reshape(z, (1, self.cppn.z_dim))
    self.z = z
    return self.cppn.generate(z, x_dim, y_dim, scale)[0]
  def show_image(self, image_data):
    '''
    image_data is a tensor, in [height width depth]
    image_data is NOT the PIL.Image class
    '''
    plt.subplot(1, 1, 1)
    y_dim = image_data.shape[0]
    x_dim = image_data.shape[1]
    c_dim = self.cppn.c_dim
    if c_dim > 1:
      plt.imshow(image_data, interpolation='nearest')
    else:
      plt.imshow(image_data.reshape(y_dim, x_dim), cmap='Greys', interpolation='nearest')
    plt.axis('off')
    plt.show()
  def save_png(self, image_data, filename):
    img_data = np.array(1-image_data)
    y_dim = image_data.shape[0]
    x_dim = image_data.shape[1]
    c_dim = self.cppn.c_dim
    if c_dim > 1:
      img_data = np.array(img_data.reshape((y_dim, x_dim, c_dim))*255.0, dtype=np.uint8)
    else:
      img_data = np.array(img_data.reshape((y_dim, x_dim))*255.0, dtype=np.uint8)
    im = Image.fromarray(img_data)
    im.save(filename)
  def to_image(self, image_data):
    # convert to PIL.Image format from np array (0, 1)
    img_data = np.array(1-image_data)
    y_dim = image_data.shape[0]
    x_dim = image_data.shape[1]
    c_dim = self.cppn.c_dim
    if c_dim > 1:
      img_data = np.array(img_data.reshape((y_dim, x_dim, c_dim))*255.0, dtype=np.uint8)
    else:
      img_data = np.array(img_data.reshape((y_dim, x_dim))*255.0, dtype=np.uint8)
    im = Image.fromarray(img_data)
    return im
  def save_anim_gif(self, z1, z2, filename, n_frame = 10, duration1 = 0.5, \
                    duration2 = 1.0, duration = 0.1, x_dim = 512, y_dim = 512, scale = 10.0, reverse = True):
    '''
    this saves an animated gif from two latent states z1 and z2
    n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2
    duration1, duration2, control how long z1 and z2 are shown.  duration controls frame speed, in seconds
    '''
    delta_z = (z2-z1) / (n_frame+1)
    total_frames = n_frame + 2
    images = []
    for i in range(total_frames):
      z = z1 + delta_z*float(i)
      images.append(self.to_image(self.generate(z, x_dim, y_dim, scale)))
      print "processing image ", i
    durations = [duration1]+[duration]*n_frame+[duration2]
    if reverse == True: # go backwards in time back to the first state
      revImages = list(images)
      revImages.reverse()
      revImages = revImages[1:]
      images = images+revImages
      durations = durations + [duration]*n_frame + [duration1]
    print "writing gif file..."
    writeGif(filename, images, duration = durations)
示例#3
0
class Sampler():
    def __init__(self, z_dim=8, c_dim=1, scale=10.0, net_size=32):
        self.cppn = CPPN(z_dim=z_dim,
                         c_dim=c_dim,
                         scale=scale,
                         net_size=net_size)
        self.z = self.generate_z(
        )  # saves most recent z here, in case we find a nice image and want the z-vec

    def reinit(self):
        self.cppn.reinit()

    def generate_z(self):
        z = np.random.uniform(-1.0, 1.0,
                              size=(1, self.cppn.z_dim)).astype(np.float32)
        return z

    def generate(self, z=None, x_dim=1080, y_dim=1060, scale=10.0):
        if z is None:
            z = self.generate_z()
        else:
            z = np.reshape(z, (1, self.cppn.z_dim))
        self.z = z
        return self.cppn.generate(z, x_dim, y_dim, scale)[0]

    def show_image(self, image_data):
        '''
    image_data is a tensor, in [height width depth]
    image_data is NOT the PIL.Image class
    '''
        plt.subplot(1, 1, 1)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            plt.imshow(image_data, interpolation='nearest')
        else:
            plt.imshow(image_data.reshape(y_dim, x_dim),
                       cmap='Greys',
                       interpolation='nearest')
        plt.axis('off')
        plt.show()

    def save_png(self, image_data, filename):
        img_data = np.array(1 - image_data)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            img_data = np.array(img_data.reshape(
                (y_dim, x_dim, c_dim)) * 255.0,
                                dtype=np.uint8)
        else:
            img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0,
                                dtype=np.uint8)
        im = Image.fromarray(img_data)
        im.save(filename)

    def to_image(self, image_data):
        # convert to PIL.Image format from np array (0, 1)
        img_data = np.array(1 - image_data)
        y_dim = image_data.shape[0]
        x_dim = image_data.shape[1]
        c_dim = self.cppn.c_dim
        if c_dim > 1:
            img_data = np.array(img_data.reshape(
                (y_dim, x_dim, c_dim)) * 255.0,
                                dtype=np.uint8)
        else:
            img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0,
                                dtype=np.uint8)
        im = Image.fromarray(img_data)
        return im
    def save_anim_gif(self, z1, z2, filename, n_frame = 240, duration1 = 0.5, \
                      duration2 = 1.0, duration = 0.1, x_dim = 1920, y_dim = 1080, scale = 10.0, reverse = True):
        '''
    this saves an animated gif from two latent states z1 and z2
    n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2
    duration1, duration2, control how long z1 and z2 are shown.  duration controls frame speed, in seconds
    '''
        delta_z = (z2 - z1) / (n_frame + 1)
        total_frames = n_frame + 2
        images = []
        for i in range(total_frames):
            z = z1 + delta_z * float(i)
            images.append(self.to_image(self.generate(z, x_dim, y_dim, scale)))
            print "processing image ", i
        durations = [duration1] + [duration] * n_frame + [duration2]
        if reverse == True:  # go backwards in time back to the first state
            revImages = list(images)
            revImages.reverse()
            revImages = revImages[1:]
            images = images + revImages
            durations = durations + [duration] * n_frame + [duration1]
        print "writing gif file..."
        writeGif(filename, images, duration=durations)

    def save_anim_mp4(self,
                      filename,
                      n_frame=120,
                      x_dim=1920,
                      y_dim=1080,
                      scale=10.0,
                      reverse=True):
        z1 = self.generate_z()
        z2 = self.generate_z()
        path_folder = 'output/%s' % filename
        if not os.path.exists(path_folder):
            print 'creating path: %s' % path_folder
            os.makedirs(path_folder)

        delta_z = (z2 - z1) / (n_frame + 1)
        total_frames = n_frame + 2
        for i in range(total_frames):
            z = z1 + delta_z * float(i)
            img = self.to_image(self.generate(z, x_dim, y_dim, scale))
            img.save('%s/%s-%04d.png' % (path_folder, filename, i))
            print "processing image %d/%d" % (i, n_frame)
        os.system(
            'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -crf 0 -preset veryslow -framerate 30 %s/%s.mp4'
            % (path_folder, filename, path_folder, filename))
        if (reverse):
            os.system(
                'ffmpeg -i %s/%s.mp4 -filter_complex "[0:v]reverse,fifo[r];[0:v][r] concat=n=2:v=1 [v]" -map "[v]" %s/%s-looped.mp4'
                % (path_folder, filename, path_folder, filename))

    def save_anim_mp4_2(self,
                        filename,
                        zs=[],
                        n_frame=360,
                        x_dim=1920,
                        y_dim=1080,
                        scale=10.0,
                        count=0):
        path_folder = 'output/%s' % filename
        if not os.path.exists(path_folder):
            print 'creating path: %s' % path_folder
            os.makedirs(path_folder)

        if (count <= 0):
            zs.append(zs[0])  # make it a full loop, return to first frame!
            first_z = zs[0]
            formatted_zs = map((lambda x: "%.3f" % x[0, 0]), zs)
            print "%d vectors: %s" % (len(zs), ", ".join(formatted_zs))
            print "%d images total" % (len(zs) * n_frame)
            print "---"

        if (len(zs) <= 1):
            z = zs[0]
            img = self.to_image(self.generate(z, x_dim, y_dim, scale))
            img.save('%s/%s-%04d.png' % (path_folder, filename, count))
            print ">> %d : %.3f" % (count, z[0, 0])
            print "---"
            print "%d images rendered" % count
            print "---"
            os.system(
                'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -crf 0 -preset veryslow -framerate 30 %s/%s.mp4'
                % (path_folder, filename, path_folder, filename))
            return

        z1 = zs.pop(0)
        z2 = zs[0]

        print ">> (%.3f to %.3f) step #%d" % (z1[0, 0], z2[0, 0], len(zs))

        delta_z = (z2 - z1) / (n_frame + 1)
        total_frames = n_frame + 1

        for i in range(total_frames):
            z = z1 + delta_z * float(i)
            image_number = i + count
            img = self.to_image(self.generate(z, x_dim, y_dim, scale))
            img.save('%s/%s-%04d.png' % (path_folder, filename, image_number))

            z_output = ", ".join(str(x) for x in z[0].tolist())
            print ">> %d : %.3f" % (image_number, z[0, 0])
        self.save_anim_mp4_2(filename, zs, n_frame, x_dim, y_dim, scale,
                             image_number + 1)

    def save_anim_mp4_loop(self,
                           filename,
                           zs,
                           n_frame=360,
                           x_dim=1920,
                           y_dim=1080,
                           scale=10.0,
                           count=0):
        path_folder = 'output/%s' % filename
        if not os.path.exists(path_folder):
            print 'creating path: %s' % path_folder
            os.makedirs(path_folder)

        if (isinstance(zs, (int, long))):
            zs = self.generate_zs(zs)

        if (count <= 0):
            formatted_zs = map((lambda x: "%.3f" % x[0, 0]), zs)
            print "%d vectors: %s" % (len(zs), ", ".join(formatted_zs))
            print "%d images total" % (len(zs) * n_frame)
            print "---"
            zs.append(zs[0])  # make it a full loop, return to first frame!
            zs.append(
                zs[1])  # make it smoothly loop (knows next frame is coming)

        if (len(zs) <= 2):
            # z = zs[0]
            # img = self.to_image(self.generate(z, x_dim, y_dim, scale))
            # img.save('%s/%s-%04d.png' % (path_folder, filename, count))
            # print ">> %d : %.3f" % (count, z[0,0])
            print "---"
            print "%d images rendered" % count
            print "---"
            os.system(
                'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -pix_fmt yuv420p -crf 0 -preset veryslow -framerate 30 %s/%s.mp4'
                % (path_folder, filename, path_folder, filename))
            # os.system('ffmpeg -i %s/%s.mp4 -filter "minterpolate='mi_mode=mci:mc_mode=aobmc:vsbmc=1:fps=90" %s/%s-interpolated-90fps.mp4')
            # os.system('docker cp %s/%s.mp4 boring_hamilton:/tmp/%s-docker.mp4')
            # os.system('docker run ')
            return

        z1 = zs.pop(0)
        z2 = zs[0]
        z3 = zs[1]

        print ">> (%.3f to %.3f) with %d steps left" % (z1[0, 0], z2[0, 0],
                                                        len(zs) - 2)

        total_frames = n_frame + 1
        for i in range(total_frames):
            percent_complete = float(i) / total_frames
            p = (math.asin(percent_complete * 2 - 1) + math.pi / 2) / math.pi
            delta_z1 = (z2 - z1) / (n_frame + 1)
            delta_z2 = (z3 - z2) / (n_frame + 1)
            delta_z = (p * delta_z2) + ((1 - p) * delta_z1)

            z = z1 + delta_z1 * float(i)
            image_number = i + count
            img = self.to_image(self.generate(z, x_dim, y_dim, scale))
            img.save('%s/%s-%04d.png' % (path_folder, filename, image_number))

            z_output = ", ".join(str(x) for x in z[0].tolist())
            print ">> #%d \tz = %.3f \t%.1f%% \t%.4f delta \t%0.4f" % (
                image_number, z[0, 0], percent_complete * 100, delta_z[0,
                                                                       0], p)
        self.save_anim_mp4_loop(filename, zs, n_frame, x_dim, y_dim, scale,
                                image_number + 1)

    def generate_zs(self, num):
        return map(lambda x: self.generate_z(), range(num))