示例#1
0
def train(train_A_dir,
          train_B_dir,
          model_dir,
          model_name,
          random_seed,
          val_A_dir,
          val_B_dir,
          output_dir,
          tensorboard_dir,
          load_path,
          gen_eval=True):
    np.random.seed(random_seed)

    # For now, copy hyperparams used in the CycleGAN
    num_epochs = 100000
    mini_batch_size = 1  # mini_batch_size = 1 is better
    learning_rate = 0.0002
    learning_rate_decay = learning_rate / 200000
    sampling_rate = 16000
    num_mcep = 24
    frame_period = 5.0
    n_frames = 128
    lambda_cycle = 10
    lambda_identity = 5
    device = 'cuda'

    # Use the same pre-processing as the CycleGAN
    print("Begin Preprocessing")

    wavs_A = load_wavs(wav_dir=train_A_dir, sr=sampling_rate)
    wavs_B = load_wavs(wav_dir=train_B_dir, sr=sampling_rate)
    print("Finished Loading")

    f0s_A, timeaxes_A, sps_A, aps_A, coded_sps_A = world_encode_data(
        wavs=wavs_A,
        fs=sampling_rate,
        frame_period=frame_period,
        coded_dim=num_mcep)
    f0s_B, timeaxes_B, sps_B, aps_B, coded_sps_B = world_encode_data(
        wavs=wavs_B,
        fs=sampling_rate,
        frame_period=frame_period,
        coded_dim=num_mcep)
    print("Finished Encoding")

    log_f0s_mean_A, log_f0s_std_A = logf0_statistics(f0s_A)
    log_f0s_mean_B, log_f0s_std_B = logf0_statistics(f0s_B)

    print('Log Pitch A')
    print('Mean: %f, Std: %f' % (log_f0s_mean_A, log_f0s_std_A))
    print('Log Pitch B')
    print('Mean: %f, Std: %f' % (log_f0s_mean_B, log_f0s_std_B))

    coded_sps_A_transposed = transpose_in_list(lst=coded_sps_A)
    coded_sps_B_transposed = transpose_in_list(lst=coded_sps_B)

    coded_sps_A_norm, coded_sps_A_mean, coded_sps_A_std = coded_sps_normalization_fit_transoform(
        coded_sps=coded_sps_A_transposed)
    print("Input data fixed.")
    coded_sps_B_norm, coded_sps_B_mean, coded_sps_B_std = coded_sps_normalization_fit_transoform(
        coded_sps=coded_sps_B_transposed)

    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    np.savez(os.path.join(model_dir, 'logf0s_normalization.npz'),
             mean_A=log_f0s_mean_A,
             std_A=log_f0s_std_A,
             mean_B=log_f0s_mean_B,
             std_B=log_f0s_std_B)
    np.savez(os.path.join(model_dir, 'mcep_normalization.npz'),
             mean_A=coded_sps_A_mean,
             std_A=coded_sps_A_std,
             mean_B=coded_sps_B_mean,
             std_B=coded_sps_B_std)

    if val_A_dir is not None:
        validation_A_output_dir = os.path.join(output_dir, 'converted_A')
        if not os.path.exists(validation_A_output_dir):
            os.makedirs(validation_A_output_dir)

    if val_B_dir is not None:
        validation_B_output_dir = os.path.join(output_dir, 'converted_B')
        if not os.path.exists(validation_B_output_dir):
            os.makedirs(validation_B_output_dir)

    print("End Preprocessing")

    if load_path is not None:
        model = CVAE(num_mcep, 128, num_mcep, 2)
        model.load_state_dict(torch.load(load_path))
        model.eval()
        if device == 'cuda':
            model.cuda()
        print("Loaded Model from path %s" % load_path)
        if val_A_dir is not None and gen_eval:
            print("Generating Evaluation Data")
            for file in os.listdir(val_A_dir):
                filepath = os.path.join(val_A_dir, file)
                print(
                    "Converting {0} from Class 0 to Class 1".format(filepath))
                wav, _ = librosa.load(filepath, sr=sampling_rate, mono=True)
                wav = wav_padding(wav=wav,
                                  sr=sampling_rate,
                                  frame_period=frame_period,
                                  multiple=4)
                f0, timeaxis, sp, ap = world_decompose(
                    wav=wav, fs=sampling_rate, frame_period=frame_period)
                f0_converted = pitch_conversion(f0=f0,
                                                mean_log_src=log_f0s_mean_A,
                                                std_log_src=log_f0s_std_A,
                                                mean_log_target=log_f0s_mean_B,
                                                std_log_target=log_f0s_std_B)
                coded_sp = world_encode_spectral_envelop(sp=sp,
                                                         fs=sampling_rate,
                                                         dim=num_mcep)
                coded_sp_transposed = coded_sp.T
                coded_sp_norm = (coded_sp_transposed -
                                 coded_sps_A_mean) / coded_sps_A_std
                coded_sp_converted_norm, _, _ = model.convert(
                    np.array([coded_sp_norm]), 0, 1, device)
                coded_sp_converted_norm = coded_sp_converted_norm.cpu().numpy()
                coded_sp_converted_norm = np.squeeze(coded_sp_converted_norm)
                coded_sp_converted = coded_sp_converted_norm * coded_sps_B_std + coded_sps_B_mean
                coded_sp_converted = coded_sp_converted.T
                coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
                decoded_sp_converted = world_decode_spectral_envelop(
                    coded_sp=coded_sp_converted, fs=sampling_rate)
                wav_transformed = world_speech_synthesis(
                    f0=f0_converted,
                    decoded_sp=decoded_sp_converted,
                    ap=ap,
                    fs=sampling_rate,
                    frame_period=frame_period)
                librosa.output.write_wav(
                    os.path.join(validation_A_output_dir,
                                 'eval_' + os.path.basename(file)),
                    wav_transformed, sampling_rate)
            exit(0)

    print("Begin Training")

    model = CVAE(num_mcep, 128, num_mcep, 2)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    writer = SummaryWriter(tensorboard_dir)

    if device == 'cuda':
        model.cuda()

    for epoch in tqdm(range(num_epochs)):
        dataset_A, dataset_B = sample_train_data(dataset_A=coded_sps_A_norm,
                                                 dataset_B=coded_sps_B_norm,
                                                 n_frames=n_frames)
        dataset_A = torch.tensor(dataset_A).to(torch.float)
        dataset_B = torch.tensor(dataset_B).to(torch.float)

        n_samples, input_dim, depth = dataset_A.shape
        y_A = F.one_hot(torch.zeros(depth).to(torch.int64),
                        num_classes=2).to(torch.float).T
        y_B = F.one_hot(torch.ones(depth).to(torch.int64),
                        num_classes=2).to(torch.float).T
        (y_A, y_B) = (y_A.reshape((1, 2, depth)), y_B.reshape((1, 2, depth)))
        y_A = torch.cat([y_A] * n_samples)
        y_B = torch.cat([y_B] * n_samples)

        # dataset_A = torch.cat((dataset_A, y_A), axis=1)
        # dataset_B = torch.cat((dataset_B, y_B), axis=1)

        X = torch.cat((dataset_A, dataset_B)).to(device)
        Y = torch.cat((y_A, y_B)).to(device)

        # out, z_mu, z_var = model(dataset_A, y_A)
        # rec_loss = F.binary_cross_entropy(out, dataset_A, size_average=False)
        # kl_diver = -0.5 * torch.sum(1 + z_var - z_mu.pow(2) - z_var.exp())
        out, z_mu, z_var = model(X, Y)

        rec_loss = F.binary_cross_entropy(out, X, size_average=False)
        kl_diver = -0.5 * torch.sum(1 + z_var - z_mu.pow(2) - z_var.exp())

        loss = rec_loss + kl_diver

        writer.add_scalar('Reconstruction Loss', rec_loss, epoch)
        writer.add_scalar('KL-Divergence', kl_diver, epoch)
        writer.add_scalar('Total Loss', loss, epoch)

        # print("loss = {0} || rec = {1} || kl = {2}".format(loss, rec_loss, kl_diver))

        loss.backward()
        optimizer.step()

        if val_A_dir is not None:
            if epoch % 1000 == 0:
                print('Generating Validation Data...')
                for file in os.listdir(val_A_dir):
                    filepath = os.path.join(val_A_dir, file)
                    print("Converting {0} from Class 0 to Class 1".format(
                        filepath))
                    wav, _ = librosa.load(filepath,
                                          sr=sampling_rate,
                                          mono=True)
                    wav = wav_padding(wav=wav,
                                      sr=sampling_rate,
                                      frame_period=frame_period,
                                      multiple=4)
                    f0, timeaxis, sp, ap = world_decompose(
                        wav=wav, fs=sampling_rate, frame_period=frame_period)
                    f0_converted = pitch_conversion(
                        f0=f0,
                        mean_log_src=log_f0s_mean_A,
                        std_log_src=log_f0s_std_A,
                        mean_log_target=log_f0s_mean_B,
                        std_log_target=log_f0s_std_B)
                    coded_sp = world_encode_spectral_envelop(sp=sp,
                                                             fs=sampling_rate,
                                                             dim=num_mcep)
                    coded_sp_transposed = coded_sp.T
                    coded_sp_norm = (coded_sp_transposed -
                                     coded_sps_A_mean) / coded_sps_A_std
                    coded_sp_converted_norm, _, _ = model.convert(
                        np.array([coded_sp_norm]), 0, 1, device)
                    coded_sp_converted_norm = coded_sp_converted_norm.cpu(
                    ).numpy()
                    coded_sp_converted_norm = np.squeeze(
                        coded_sp_converted_norm)
                    coded_sp_converted = coded_sp_converted_norm * coded_sps_B_std + coded_sps_B_mean
                    coded_sp_converted = coded_sp_converted.T
                    coded_sp_converted = np.ascontiguousarray(
                        coded_sp_converted)
                    decoded_sp_converted = world_decode_spectral_envelop(
                        coded_sp=coded_sp_converted, fs=sampling_rate)
                    wav_transformed = world_speech_synthesis(
                        f0=f0_converted,
                        decoded_sp=decoded_sp_converted,
                        ap=ap,
                        fs=sampling_rate,
                        frame_period=frame_period)
                    librosa.output.write_wav(
                        os.path.join(validation_A_output_dir,
                                     str(epoch) + '_' +
                                     os.path.basename(file)), wav_transformed,
                        sampling_rate)
                    break
        if epoch % 1000 == 0:
            print('Saving Checkpoint')
            filepath = os.path.join(model_dir, model_name)
            if not os.path.exists(filepath):
                os.makedirs(filepath)
            torch.save(model.state_dict(),
                       os.path.join(filepath, '{0}.ckpt'.format(epoch)))
示例#2
0
trainx, trainy = np.array(
    train[train.columns[train.columns != "class"]]), np.array(
        pd.get_dummies(train["class"]))
testx, testy = np.array(
    test[train.columns[train.columns != "class"]]), np.array(
        pd.get_dummies(test["class"]))
batch_size = 512
max_epoch = 100
train_N = len(train)
test_N = len(test)
gpu = False
device = "cuda" if gpu else "cpu"

model = CVAE()
if gpu:
    model = model.cuda()
opt = optim.Adadelta(model.parameters(), lr=1e-3)


def Loss_function(x_hat, x, mu, logsimga):
    reconstraction_loss = F.binary_cross_entropy(x_hat, x, size_average=False)
    KL_div = -0.5 * th.sum(1 + logsimga - mu.pow(2) - logsimga.exp())

    return reconstraction_loss + KL_div


def create_batch(x, y):
    a = list(range(len(x)))
    np.random.shuffle(a)
    x = x[a]
    y = y[a]