示例#1
0
def main(_):
    # Construct Graph
    capsNet = CapsNet(is_training=True, routing=1, dcap_init=1)
    print('[+] Graph is constructed')

    config = tf.ConfigProto()
    # use GPU0
    config.gpu_options.visible_device_list = '2'
    # allocate 50% of GPU memory
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.45
    # Start session
    sv = tf.train.Supervisor(graph=capsNet.graph,
                             logdir=conf.logdir,
                             save_model_secs=0)
    with sv.managed_session(config=config) as sess:
        print('[+] Trainable variables')
        for tvar in capsNet.trainable_variables:
            print(tvar)

        print('[+] Training start')
        for epoch in range(conf.num_epochs):
            if sv.should_stop(): break
            losses = []

            # from tqdm import tqdm
            # for step in tqdm(range(capsNet.num_batch), total=capsNet.num_batch, ncols=70, leave=False, unit='b'):
            for step in range(capsNet.num_batch):
                _, mloss = sess.run([capsNet.cnn_op, capsNet.mloss])
                losses.append(mloss)
                if step % 100 == 0:
                    print("%s: epoch[%g/%g], step[%g/%g], mloss[%f]" %
                          (datetime.now(), epoch, conf.num_epochs, step,
                           capsNet.num_batch, mloss))
            print(('[+] EPOCH %d : ' % epoch) + str(np.mean(losses)))
            gs = sess.run(capsNet.global_step)
            sv.saver.save(
                sess,
                conf.logdir + '/model_epoch_%02d_gs_%d_init' % (epoch, gs))
        for epoch in range(conf.num_epochs):
            if sv.should_stop(): break
            losses = []

            # from tqdm import tqdm
            # for step in tqdm(range(capsNet.num_batch), total=capsNet.num_batch, ncols=70, leave=False, unit='b'):
            for step in range(capsNet.num_batch):
                _, dloss = sess.run([capsNet.cap_op, capsNet.dloss])
                losses.append(dloss)
                if step % 100 == 0:
                    print("%s: epoch[%g/%g], step[%g/%g], dloss[%f]" %
                          (datetime.now(), epoch, conf.num_epochs, step,
                           capsNet.num_batch, dloss))
            print(('[+] EPOCH %d : ' % epoch) + str(np.mean(losses)))
            gs = sess.run(capsNet.global_step)
            sv.saver.save(
                sess,
                conf.logdir + '/model_epoch_%02d_gs_%d_cap' % (epoch, gs))

    print("[+] Training is Completed")
    return
示例#2
0
def main(_):
    # Construct Graph
    capsNet = CapsNet(is_training=True, routing=2)
    print('[+] Graph is constructed')
    config = tf.ConfigProto()
    # use GPU0
    config.gpu_options.visible_device_list = '2'
    # allocate 50% of GPU memory
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.45
    # Start session
    sv = tf.train.Supervisor(graph=capsNet.graph,
                             logdir=conf.logdir,
                             save_model_secs=0)
    with sv.managed_session(config=config) as sess:
        print('[+] Trainable variables')
        for tvar in capsNet.train_vars: print(tvar)

        print('[+] Training start')
        for epoch in range(conf.num_epochs):
            if sv.should_stop(): break
            losses = []

            # from tqdm import tqdm
            # for step in tqdm(range(capsNet.num_batch), total=capsNet.num_batch, ncols=70, leave=False, unit='b'):
            for step in range(capsNet.num_batch):
                _,_, loss, rloss, mloss = sess.run([capsNet.train_op, capsNet.routing_op, capsNet.loss, capsNet.routing_loss, capsNet.mloss])
                losses.append(loss)
                if step % 100 == 0:
                    print("%s: epoch[%g/%g], step[%g/%g], loss[%f], rloss[%f], mloss[%f]"%(datetime.now(), epoch, conf.num_epochs, step, capsNet.num_batch, loss, rloss, mloss))
            print(('[+] EPOCH %d : ' % epoch) + str(np.mean(losses)))
            gs = sess.run(capsNet.global_step)
            sv.saver.save(sess, conf.logdir + '/model_epoch_%02d_gs_%d' % (epoch, gs))

            ######
            teX, teY = load_mnist(conf.dataset, is_training=False)
            # Start session

            reconstruction_err = []
            classification_acc = []
            for i in range(10000 // conf.batch_size):
                start = i * conf.batch_size
                end = start + conf.batch_size

                # Reconstruction


                # Classification
                cls_result = sess.run(capsNet.preds, {capsNet.x: teX[start:end]})
                cls_answer = teY[start:end]
                cls_acc = np.mean(np.equal(cls_result, cls_answer).astype(np.float32))
                classification_acc.append(cls_acc)

            # Print classification accuracy & reconstruction error
            print('classification_acc : ' + str(np.mean(classification_acc) * 100))
            ######

    print("[+] Training is Completed")
    return
示例#3
0
def encode(data, model_ckpt, save_name):
    num_test = data.shape[0]
    imgs = tf.placeholder(
        tf.float32,
        [args.batch_size, args.height, args.width, args.num_channel])
    model = CapsNet(imgs, None, 'capsnet')
    model.build()

    saver = tf.train.Saver()

    with tf.Session() as sess:
        saver.restore(sess, model_ckpt)
        encode = np.zeros([num_test, args.num_class, 16])
        for i in range(num_test // args.batch_size):
            img_bch = data[i * args.batch_size:(i + 1) *
                           args.batch_size, :, :, :]
            encode_bch = sess.run(model.caps2, feed_dict={imgs: img_bch})
            assert encode_bch.shape == (args.batch_size, args.num_class, 16, 1)
            encode[i*args.batch_size:(i+1)*args.batch_size,:,:] = \
                                             np.squeeze(encode_bch,[-1])
    np.save(save_name, encode)
示例#4
0
def main(_):
    # Load Graph
    capsNet = CapsNet(is_training=False)
    print('[+] Graph is constructed')

    # Load test data
    teX, teY = load_mnist(conf.dataset, is_training=False)

    # Start session
    with capsNet.graph.as_default():
        sv = tf.train.Supervisor(logdir=conf.logdir)
        with sv.managed_session(config=tf.ConfigProto(
                allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(conf.logdir))
            print('[+] Graph is restored from ' + conf.logdir)

            # Make results directory
            if not os.path.exists('results'):
                os.mkdir('results')

            reconstruction_err = []
            classification_acc = []
            for i in range(10000 // conf.batch_size):
                start = i * conf.batch_size
                end = start + conf.batch_size

                # Reconstruction
                recon_imgs = sess.run(capsNet.decoded,
                                      {capsNet.x: teX[start:end]})
                recon_imgs = np.reshape(recon_imgs, (conf.batch_size, -1))
                orgin_imgs = np.reshape(teX[start:end], (conf.batch_size, -1))
                squared = np.square(recon_imgs - orgin_imgs)
                reconstruction_err.append(np.mean(squared))
                if i % 5 == 0:
                    imgs = np.reshape(recon_imgs, (conf.batch_size, 28, 28, 1))
                    size = 6
                    save_images(imgs[0:size * size, :], [size, size],
                                'results/test_%03d.png' % i)

                # Classification
                cls_result = sess.run(capsNet.preds,
                                      {capsNet.x: teX[start:end]})
                cls_answer = teY[start:end]
                cls_acc = np.mean(
                    np.equal(cls_result, cls_answer).astype(np.float32))
                classification_acc.append(cls_acc)

            # Print classification accuracy & reconstruction error
            print('reconstruction_err : ' + str(np.mean(reconstruction_err)))
            print('classification_acc : ' +
                  str(np.mean(classification_acc) * 100))
示例#5
0
def main(_):
    # Load Graph
    capsNet = CapsNet(is_training=False, routing=2)
    print('[+] Graph is constructed')

    # Load test data
    teX, teY = load_mnist(conf.dataset, is_training=False)
    config = tf.ConfigProto(allow_soft_placement=True)
    # use GPU0
    config.gpu_options.visible_device_list = '3'
    # allocate 50% of GPU memory
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.45
    # Start session
    with capsNet.graph.as_default():
        sv = tf.train.Supervisor(logdir=conf.logdir)
        with sv.managed_session(config=config) as sess:
            # Restore parameters
            checkpoint_path = tf.train.latest_checkpoint(conf.logdir)
            sv.saver.restore(sess, checkpoint_path)
            print('[+] Graph is restored from ' + checkpoint_path)

            # Make results directory
            if not os.path.exists('results'):
                os.mkdir('results')

            reconstruction_err = []
            classification_acc = []
            for i in range(10000 // conf.batch_size):
                start = i * conf.batch_size
                end = start + conf.batch_size

                # Reconstruction

                # Classification
                cls_result = sess.run(capsNet.preds,
                                      {capsNet.x: teX[start:end]})
                cls_answer = teY[start:end]
                cls_acc = np.mean(
                    np.equal(cls_result, cls_answer).astype(np.float32))
                classification_acc.append(cls_acc)

            # Print classification accuracy & reconstruction error
            print('classification_acc : ' +
                  str(np.mean(classification_acc) * 100))
示例#6
0
def get_network(opts):
    if opts.dataset == "mnist":
        capsnet = CapsNet(reconstruction_type=opts.decoder,
                          routing_iterations = opts.routing_iterations,
                          batchnorm=opts.batch_norm,
                          loss=opts.loss_type,
                          leaky_routing=opts.leaky_routing)
    if opts.dataset == "small_norb":
        if opts.decoder == "Conv":
            opts.decoder = "Conv32"
        capsnet = CapsNet(reconstruction_type=opts.decoder,
                          imsize=32,
                          num_classes=5,
                          routing_iterations = opts.routing_iterations, 
                          primary_caps_gridsize=8,
                          num_primary_capsules=32,
                          batchnorm=opts.batch_norm,
                          loss = opts.loss_type,
                          leaky_routing=opts.leaky_routing)
    if opts.dataset == "cifar10":
        if opts.decoder == "Conv":
            opts.decoder = "Conv32"
        capsnet = CapsNet(reconstruction_type=opts.decoder,
                          imsize=32, 
                          routing_iterations = opts.routing_iterations,
                          primary_caps_gridsize=8,
                          img_channels=3, 
                          batchnorm=opts.batch_norm,
                          num_primary_capsules=32,
                          loss=opts.loss_type,
                          leaky_routing=opts.leaky_routing)
    if opts.use_gpu:
        capsnet.cuda()
    if opts.gpu_ids:
        capsnet = GPUParallell(capsnet, opts.gpu_ids)
        print("Training on GPU IDS:", opts.gpu_ids)
    return capsnet
示例#7
0
def main(_):
    tf.logging.info('Loading Graph...')
    model = CapsNet()
    tf.logging.info('Graph loaded')

    sv = tf.train.Supervisor(graph=model.graph,
                             logdir=cfg.logdir,
                             save_model_secs=0)

    if not cfg.is_training:
        #_ = evaluation(model, sv)
        _ = test(model, sv)

    else:
        tf.logging.info('Start is_training...')
        loss, acc = train(model, sv)
        tf.logging.info('Training done')

        if cfg.save:
            test_acc = evaluation(model, sv)
示例#8
0
def train(args, from_epoch=0):

    if not os.path.exists(os.path.dirname(args.summary_path)):
        os.mkdir(os.path.dirname(args.summary_path))
    acc_file = open(args.summary_path, 'a')

    tf.set_random_seed(100)
    imgs = tf.placeholder(tf.float32, [args.batch_size, args.height,
                                       args.width, args.num_channel])
    labels_raw = tf.placeholder(tf.float32, [args.batch_size])
    labels = tf.one_hot(tf.cast(labels_raw, tf.int32), args.num_class)

    model = CapsNet(imgs, labels, 'capsnet')
    model.build()
    model.calc_loss()
    pred = tf.argmax(tf.reduce_sum(tf.square(model.caps2),axis=[2,3]),axis=1)
    pred = tf.cast(pred, tf.float32)
    correct_pred = tf.cast(tf.equal(pred, labels_raw), tf.float32)
    accuracy = tf.reduce_mean(correct_pred)
    loss = model.total_loss

    optimizer = tf.train.AdamOptimizer(0.0001)
    train_op = optimizer.minimize(loss)

#########  will run out of memory
##    val_imgs = tf.placeholder(tf.float32, [10000, args.height, args.width, args.num_channel])
##    val_labels_raw = tf.placeholder(tf.float32, [10000])
##    val_labels = tf.one_hot(tf.cast(val_labels_raw, tf.int32), 10)
##    val_model = CapsNet(val_imgs, val_labels, name="capsnet")
##    val_model.build()
##    val_model.calc_loss()
##    val_pred = tf.argmax(tf.reduce_sum(tf.square(val_model.caps2),axis=[2,3]),axis=1)
##    val_pred = tf.cast(val_pred, tf.float32)
##    correct_val_pred = tf.cast(tf.equal(val_pred, val_labels_raw), tf.float32)
##    val_accuracy = tf.reduce_mean(correct_val_pred)
##    val_loss = val_model.total_loss

####################       for mnist data
##    train_img, train_label = prepare_data(args.data_path, 'mnist_train.csv', 60000)
##    train_img = np.reshape(train_img, [-1, 28, 28, 1])
##    num_train = train_img.shape[0]
##    test_img, test_label = prepare_data(args.data_path, 'mnist_test.csv', 10000)
##    test_img = np.reshape(test_img, [-1, 28, 28, 1])

############           for face96 data
##    data = np.load("face_96.npy")
##    total_label = data[:,0]
##    total_img = data[:,1:]/255
##    #total_img, total_label = prepare_data('face_96.csv', length)
##    test_img = total_img[[i for i in range(0, length, 5)],:]
##    test_label = total_label[[i for i in range(0, length, 5)]]
##    test_img = np.reshape(test_img, [-1, 196, 196, 3])
##    num_test = test_img.shape[0]
##    train_idx = list(set(range(length)) - set(range(0, length, 5)))
##    train_img = total_img[train_idx, :]
##    train_label = total_label[train_idx]
##    train_img = np.reshape(train_img, [-1, 196, 196, 3])
##    num_train = train_img.shape[0]
##
##    train_img_resize = np.zeros([length, 28, 28, 3])
##    for i in range(num_train):
##        train_img_resize[i,:,:,0] = resize(train_img[i,:,:,0],[28,28])
##        train_img_resize[i,:,:,1] = resize(train_img[i,:,:,1],[28,28])
##        train_img_resize[i,:,:,2] = resize(train_img[i,:,:,2],[28,28])
##    test_img_resize = np.zeros([length, 28, 28, 3])
##    for i in range(num_test):
##        test_img_resize[i,:,:,0] = resize(test_img[i,:,:,0],[28,28])
##        test_img_resize[i,:,:,1] = resize(test_img[i,:,:,1],[28,28])
##        test_img_resize[i,:,:,2] = resize(test_img[i,:,:,2],[28,28])
##    train_img = train_img_resize
##    test_img = test_img_resize

################   for landmark data, don't need this one
#######            idea is using getimagebatch and keep track of
##########         label using index of the labels.npy
##    #train_labels = np.load("labels_train_8249.npy")
##    num_labels= 50
##    train_size = 0.9
##    test_size = 0.1
##    data_meta = np.load(args.metadata_path)
##    # print(data_meta.shape)  (1225029,3)
##    (data_urls_train, labels_train, imgid_train, data_urls_test,
##     labels_test, imgid_test) = Utils_Data.FormatDataset(data_meta,
##              num_labels=num_labels, train_size=train_size, test_size=test_size)
##    num_train = data_urls_train.size
##    num_test = data_urls_test.size
##    #print(set(labels_train),set(labels_test))   ## 50 classes
##    labels_train_set = list(set(labels_train))
##    labels_train_dict = {labels_train_set[i]:i for i in range(len(labels_train_set))}
##    labels_train = [labels_train_dict[labels_train[i]] for i in range(len(labels_train))]
##    labels_train = np.array(labels_train)
##    #print(labels_train[:100])
##    np.random.seed(100)
##    np.random.shuffle(data_urls_train)
##    np.random.seed(100)
##    np.random.shuffle(labels_train)
##    np.random.seed(100)
##    np.random.shuffle(imgid_train)
##    in_memory_url = data_urls_train[:30000]
##    in_memory_labels = labels_train[:30000]
##    in_memory_imgid = imgid_train[:30000]
##    curr_index = 0
##    img_bch, curr_index, label_index = Utils_Data.GetImageBatch(urls=in_memory_url,
##                    start_index=curr_index,imgids=in_memory_imgid, batch_size=30000, \
##                    path='../images', n_rows=28, n_cols=28)
##    print(img_bch.shape, label_index[:100])
##    raise
##

######   load train and test data, trainsize ~30000, testsize ~34000

    test_img = np.load(os.path.join(args.data_path, "train_img_9.npy"))
    test_label = np.load(os.path.join(args.data_path, "train_label_9.npy"))
    num_test = test_img.shape[0]

    saver = tf.train.Saver()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session() as sess:
        if from_epoch == 0:
            sess.run(tf.global_variables_initializer())
        else:
            saver.restore(sess, args.CheckPointPath+"-{}".format(from_epoch))
        for epoch in range(from_epoch, from_epoch+args.epochs):
            if epoch % 10 == 0:
                print("-----------------loading data--------------------")
                train_img = np.load(os.path.join(args.data_path,
                    "train_img_{}.npy".format(epoch//10%9)))
                print("check: ", train_img.max(), train_img.shape)
                train_label = np.load(os.path.join(args.data_path,
                    "train_label_{}.npy".format(epoch//10%9)))
                print("check: ", train_label.max(), train_label.shape)
                num_train = train_img.shape[0]
            loops = num_train//args.batch_size
            curr_index = 0
            for i in range(loops):
                tic = time.time()
                #### get input mini-batch
                img_bch = train_img[(i*args.batch_size):((i+1)*args.batch_size),:,:,:]
                label_bch = train_label[(i*args.batch_size):((i+1)*args.batch_size)]

                #######   this method need IO from disk, slow
                #img_bch, curr_index, label_index = Utils_Data.GetImageBatch(urls=data_urls_train,
                #    start_index=curr_index,imgids=imgid_train, batch_size=args.batch_size, \
                #    path='../images', n_rows=28, n_cols=28)
                #print(curr_index, label_index)
                #img_bch = np.array(img_bch / 255 * 2 - 2, np.float32)
                #label_bch = np.array(labels_train[label_index], np.float32)

                #### train the model, take down the current training accuracy
                _, cur_accuracy, cur_loss = sess.run([train_op, accuracy, loss],
                                                     feed_dict={imgs: img_bch,
                                                     labels_raw: label_bch})
                print("Epoch: {} BATCH: {} Time: {:.4f} Loss:{:.4f} Accu: {:.4f}".format(
                      epoch, i, time.time()-tic, cur_loss, cur_accuracy))


            if epoch % 30 == 0:
                saver.save(sess, args.CheckPointPath, global_step=epoch)

            #### get the validate accuracy
            acc = []
            for j in range(num_test//args.batch_size//10):
                val_img_bch = test_img[(j*args.batch_size):((j+1)*args.batch_size),:,:,:]
                val_label_bch = test_label[(j*args.batch_size):((j+1)*args.batch_size)]

                val_acc = sess.run(accuracy,
                                   feed_dict={imgs: val_img_bch,
                                              labels_raw: val_label_bch})
                acc.append(val_acc)

            print("Epoch: {} TestAccu: {:.4f}".format(
                  epoch, np.mean(acc)))
            try:
                acc_file.write("Epoch: {} TestAccu: {:.4f}\n".format(
                           epoch, np.mean(acc)))
                acc_file.flush()
            except:
                continue
    acc_file.close()
示例#9
0
data.normalize(stats)
data.c_in, data.c_out = config.MODEL.inputchannels, 2

### seg_model Caps
print('data done')
run_dir = config.LEARNER.runsave_dir + '/' + name
os.makedirs(run_dir, exist_ok=True)
exp_name = 'seg_model_caps'
mlflow_CB = partial(
    MLFlowTracker,
    exp_name=exp_name,
    uri='file:/workspace/oct_ca_seg/runsaves/fastai_experiments/mlruns/',
    params=config.config_dict,
    log_model=True,
    nb_path="/workspace/oct_ca_seg/oct/02_caps.ipynb")
deepCap = CapsNet(config.MODEL).cuda()

#print(config_dict)
#print('debugging', data.one_batch()[0].shape, deepCap(data.one_batch()[0].cuda()), config.MODEL.input_images)

learner = Learner(data=data,
                  model=deepCap,
                  metrics=metrics,
                  callback_fns=mlflow_CB)
print('starting run')
with mlflow.start_run():
    learner.fit_one_cycle(config.LEARNER.epochs,
                          slice(config.LEARNER.lr),
                          pct_start=config.LEARNER.pct_start)
    MLPY.save_model(learner.model, run_dir + '/model')
    learner.save(Path(run_dir) / 'learner')
示例#10
0
dataloader = DataLoader(pathName, matName, PATCH_SIZE, RATIO, AUGMENT_RATIO)

trainPatch, trainSpectrum, trainLabel = dataloader.loadTrainData()
testPatch, testSpectrum, testLabel = dataloader.loadTestData()
allLabeledPatch, allLabeledSpectrum, allLabeledLabel, allLabeledIndex = dataloader.loadAllLabeledData()

w = tf.placeholder(shape=[None, dataloader.bands, 1], dtype=tf.float32)
x = tf.placeholder(shape=[None, dataloader.patchSize, dataloader.patchSize, dataloader.bands], dtype=tf.float32)
y = tf.placeholder(shape=[None, dataloader.numClasses], dtype=tf.float32)
k = tf.placeholder(dtype=tf.float32)

if args.model == 1:
	pred = DCCapsNet(x, w, k, dataloader.numClasses, FIRST_LAYER, SECOND_LAYER)
	print("USING DCCAPS***************************************")
elif args.model==2:
	pred = CapsNet(x, dataloader.numClasses)
	print("USING CAPS*****************************************")
else:
	pred=conv_net(x,dataloader.numClasses)
	print("USING CONV*****************************************")
pred = tf.divide(pred, tf.reduce_sum(pred, 1, keep_dims=True))

loss = tf.reduce_mean(cl.losses.margin_loss(y, pred))
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(loss)
correctPredictions = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correctPredictions, "float"))
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
	leastLoss = 100.0
示例#11
0
                        type=int,
                        default=16,
                        metavar='N',
                        help='num of workers to fetch data')
    parser.add_argument('--multi-gpu',
                        default=False,
                        help='if use multiple gpu(default: False)')
    args = parser.parse_args()

    use_cuda = not args.disable_cuda and torch.cuda.is_available()

    A, B, C, D, E, r = 32, 32, 32, 32, args.num_classes, args.r  # a classic CapsNet
    if args.multi_gpu:
        print("Enable multi gpus")
        model = nn.parallel.DataParallel(
            CapsNet(args.batch_size, A, B, C, D, E, r))
    else:
        model = CapsNet(args.batch_size, A, B, C, D, E, r)

    meter_loss = tnt.meter.AverageValueMeter()
    meter_accuracy = tnt.meter.ClassErrorMeter(accuracy=True)
    confusion_meter = tnt.meter.ConfusionMeter(args.num_classes,
                                               normalized=True)

    setting_logger = VisdomLogger('text',
                                  opts={'title': 'Settings'},
                                  env=args.env_name)
    train_loss_logger = VisdomPlotLogger('line',
                                         opts={'title': 'Train Loss'},
                                         env=args.env_name)
    train_error_logger = VisdomPlotLogger('line',