def main(): #load parameters###################################################################### opt = TrainOptions() args = opt.initialize() #create timer########################################################################## _t = {'iter time' : Timer()} #create logs########################################################################## model_name = args.source + '_to_' + args.target if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) #Load data############################################################################# sourceloader, targetloader = CreateSrcDataLoader(args), CreateTrgDataLoader(args) targetloader_iter, sourceloader_iter = iter(targetloader), iter(sourceloader) #Load deeplab+ optimizer############################################################### model, optimizer = CreateModel(args) #Load Descriminator+ optimizer######################################################### model_D, optimizer_D = CreateDiscriminator(args) #start training############################################################################################### start_iter = 0 #restore checkoint############################################################################## if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) #start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[2]) #Tensorboard#################################################################################### train_writer = tensorboardX.SummaryWriter(os.path.join(args.snapshot_dir, "logs", model_name)) bce_loss = torch.nn.BCEWithLogitsLoss() cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D.train() model_D.cuda() loss = ['loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real'] _t['iter time'].tic() for i in range(start_iter, args.num_steps): model.adjust_learning_rate(args, optimizer, i) model_D.adjust_learning_rate(args, optimizer_D, i) optimizer.zero_grad() optimizer_D.zero_grad() for param in model_D.parameters(): param.requires_grad = False src_img, src_lbl, _, _ = sourceloader_iter.next() src_img, src_lbl = Variable(src_img).cuda(), Variable(src_lbl.long()).cuda() src_seg_score = model(src_img, lbl=src_lbl) # M(S),Ys loss_seg_src = model.loss # Lseg(M(S),Ys) loss_seg_src.backward() if args.data_label_folder_target is not None: trg_img, trg_lbl, _, _ = targetloader_iter.next() trg_img, trg_lbl = Variable(trg_img).cuda(), Variable(trg_lbl.long()).cuda() trg_seg_score = model(trg_img, lbl=trg_lbl) loss_seg_trg = model.loss else: trg_img, _, name = targetloader_iter.next() trg_img = Variable(trg_img).cuda() trg_seg_score = model(trg_img) # M(T) loss_seg_trg = 0 outD_trg = model_D(F.softmax(trg_seg_score), 0) loss_D_trg_fake = model_D.loss loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_seg_trg loss_trg.backward() for param in model_D.parameters(): param.requires_grad = True src_seg_score, trg_seg_score = src_seg_score.detach(), trg_seg_score.detach() outD_src = model_D(F.softmax(src_seg_score), 0) # D(M(S), source) loss_D_src_real = model_D.loss / 2 loss_D_src_real.backward() outD_trg = model_D(F.softmax(trg_seg_score), 1) # D(M(T), target) loss_D_trg_real = model_D.loss / 2 loss_D_trg_real.backward() optimizer.step() optimizer_D.step() for m in loss: train_writer.add_scalar(m, eval(m), i+1) if (i+1) % args.save_pred_every == 0: print('taking snapshot ...') torch.save(model.state_dict(), os.path.join(args.snapshot_dir, '%s_' %(args.source) +str(i+1)+'.pth' )) torch.save(model_D.state_dict(), os.path.join(args.snapshot_dir, '%s_' %(args.source) +str(i+1)+'_D.pth' )) if (i+1) % args.print_freq == 0: _t['iter time'].toc(average=False) print('[it %d][src seg loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_seg_src.data, optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff)) if i + 1 > args.num_steps_stop: print ('finish training') break _t['iter time'].tic()
def main(): # torch.manual_seed(1234) # torch.cuda.manual_seed(1234) opt = TrainOptions() args = opt.initialize() _t = {'iter time' : Timer()} model_name = args.source + '_to_' + args.target if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) sourceloader, targetloader = CreateSrcDataLoader(args), CreateTrgDataLoader(args) targetloader_iter, sourceloader_iter = iter(targetloader), iter(sourceloader) model, optimizer = CreateModel(args) model_D, optimizer_D = CreateDiscriminator(args) start_iter = 0 if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) train_writer = tensorboardX.SummaryWriter(os.path.join(args.snapshot_dir, "logs", model_name)) bce_loss = torch.nn.BCEWithLogitsLoss() cent_loss=ConditionalEntropyLoss() cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D.train() model_D.cuda() loss = ['loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real'] _t['iter time'].tic() pbar = tqdm(range(start_iter,args.num_steps_stop)) #for i in range(start_iter, args.num_steps): for i in pbar: model.adjust_learning_rate(args, optimizer, i) model_D.adjust_learning_rate(args, optimizer_D, i) optimizer.zero_grad() optimizer_D.zero_grad() for param in model_D.parameters(): param.requires_grad = False src_img, src_lbl, _, _ = sourceloader_iter.next() src_img, src_lbl = Variable(src_img).cuda(), Variable(src_lbl.long()).cuda() src_seg_score = model(src_img) loss_seg_src = CrossEntropy2d(src_seg_score, src_lbl) #loss_seg_src = model.loss loss_seg_src.backward() if args.data_label_folder_target is not None: trg_img, trg_lbl, _, _ = targetloader_iter.next() trg_img, trg_lbl = Variable(trg_img).cuda(), Variable(trg_lbl.long()).cuda() trg_seg_score = model(trg_img) loss_seg_trg = model.loss else: trg_img, _, name = targetloader_iter.next() trg_img = Variable(trg_img).cuda() trg_seg_score = model(trg_img) #ipdb.set_trace() loss_seg_trg= cent_loss(trg_seg_score) #loss_seg_trg= entropy_loss(F.softmax(trg_seg_score)) #loss_seg_trg = 0 outD_trg = model_D(F.softmax(trg_seg_score)) loss_D_trg_fake = bce_loss(outD_trg, Variable(torch.FloatTensor(outD_trg.data.size()).fill_(0)).cuda()) #loss_D_trg_fake = model_D.loss loss_trg = args.lambda_adv_target * (loss_D_trg_fake + loss_seg_trg) loss_trg.backward() for param in model_D.parameters(): param.requires_grad = True src_seg_score, trg_seg_score = src_seg_score.detach(), trg_seg_score.detach() outD_src = model_D(F.softmax(src_seg_score)) loss_D_src_real = bce_loss(outD_src, Variable(torch.FloatTensor(outD_src.data.size()).fill_(0)).cuda())/ 2 #loss_D_src_real = model_D.loss / 2 loss_D_src_real.backward() outD_trg = model_D(F.softmax(trg_seg_score)) loss_D_trg_real = bce_loss(outD_trg, Variable(torch.FloatTensor(outD_trg.data.size()).fill_(1)).cuda())/ 2 #loss_D_trg_real = model_D.loss / 2 loss_D_trg_real.backward() d_loss=loss_D_src_real.data+ loss_D_trg_real.data optimizer.step() optimizer_D.step() for m in loss: train_writer.add_scalar(m, eval(m), i+1) if (i+1) % args.save_pred_every == 0: print 'taking snapshot ...' torch.save(model.state_dict(), os.path.join(args.snapshot_dir, '%s_' %(args.source) +str(i+1)+'.pth' )) torch.save(model_D.state_dict(), os.path.join(args.snapshot_dir, '%s_' %(args.source) +str(i+1)+'_D.pth' )) if (i+1) % args.print_freq == 0: _t['iter time'].toc(average=False) print '[it %d][src seg loss %.4f][adv loss %.4f][d loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_seg_src.data, loss_D_trg_fake.data,d_loss,optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff) if i + 1 > args.num_steps_stop: print 'finish training' break _t['iter time'].tic()
def main(): # torch.manual_seed(1234) # torch.cuda.manual_seed(1234) opt = TrainOptions() args = opt.initialize() _t = {'iter time': Timer()} model_name = args.source + '_to_' + args.target if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) sourceloader, targetloader = CreateSrcDataLoader( args), CreateTrgDataLoader(args) targetloader_iter, sourceloader_iter = iter(targetloader), iter( sourceloader) model, optimizer = CreateModel(args) model_D, optimizer_D = CreateDiscriminator(args) start_iter = 0 if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) train_writer = tensorboardX.SummaryWriter( os.path.join(args.snapshot_dir, "logs", model_name)) bce_loss = torch.nn.BCEWithLogitsLoss() l1_loss = torch.nn.L1Loss() cos_loss = torch.nn.CosineSimilarity(dim=0, eps=1e-06) cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D.train() model_D.cuda() loss = [ 'loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real' ] _t['iter time'].tic() pbar = tqdm(range(start_iter, args.num_steps_stop)) #for i in range(start_iter, args.num_steps): for i in pbar: model.adjust_learning_rate(args, optimizer, i) model_D.adjust_learning_rate(args, optimizer_D, i) optimizer.zero_grad() optimizer_D.zero_grad() for param in model_D.parameters(): param.requires_grad = False src_img, src_lbl, _, _ = sourceloader_iter.next() src_img, src_lbl = Variable(src_img).cuda(), Variable( src_lbl.long()).cuda() src_seg_score, src_seg_score2 = model(src_img) loss_seg_src1 = CrossEntropy2d(src_seg_score, src_lbl) loss_seg_src2 = CrossEntropy2d(src_seg_score2, src_lbl) loss_seg_src = loss_seg_src1 + loss_seg_src2 loss_seg_src.backward() if args.data_label_folder_target is not None: trg_img, trg_lbl, _, _ = targetloader_iter.next() trg_img, trg_lbl = Variable(trg_img).cuda(), Variable( trg_lbl.long()).cuda() trg_seg_score = model(trg_img) loss_seg_trg = model.loss else: trg_img, _, name = targetloader_iter.next() trg_img = Variable(trg_img).cuda() trg_seg_score, trg_seg_score2 = model(trg_img) loss_seg_trg = 0 outD_trg = model_D(F.softmax(trg_seg_score)) outD_trg2 = model_D(F.softmax(trg_seg_score2)) loss_D_trg_fake1 = bce_loss( outD_trg, Variable(torch.FloatTensor(outD_trg.data.size()).fill_(0)).cuda()) loss_D_trg_fake2 = bce_loss( outD_trg2, Variable(torch.FloatTensor(outD_trg2.data.size()).fill_(0)).cuda()) loss_D_trg_fake = loss_D_trg_fake1 + loss_D_trg_fake2 loss_agree = l1_loss(F.softmax(trg_seg_score), F.softmax(trg_seg_score2)) loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_seg_trg + loss_agree loss_trg.backward() #Weight Discrepancy Loss W5 = None W6 = None if args.model == 'DeepLab2': for (w5, w6) in zip(model.layer5.parameters(), model.layer6.parameters()): if W5 is None and W6 is None: W5 = w5.view(-1) W6 = w6.view(-1) else: W5 = torch.cat((W5, w5.view(-1)), 0) W6 = torch.cat((W6, w6.view(-1)), 0) #ipdb.set_trace() #loss_weight = (torch.matmul(W5, W6) / (torch.norm(W5) * torch.norm(W6)) + 1) # +1 is for a positive loss # loss_weight = loss_weight * damping * 2 loss_weight = args.weight_div * (cos_loss(W5, W6) + 1) loss_weight.backward() for param in model_D.parameters(): param.requires_grad = True src_seg_score, trg_seg_score = src_seg_score.detach( ), trg_seg_score.detach() src_seg_score2, trg_seg_score2 = src_seg_score2.detach( ), trg_seg_score2.detach() outD_src = model_D(F.softmax(src_seg_score)) loss_D_src_real1 = bce_loss( outD_src, Variable(torch.FloatTensor( outD_src.data.size()).fill_(0)).cuda()) / 2 outD_src2 = model_D(F.softmax(src_seg_score2)) loss_D_src_real2 = bce_loss( outD_src2, Variable(torch.FloatTensor( outD_src2.data.size()).fill_(0)).cuda()) / 2 loss_D_src_real = loss_D_src_real1 + loss_D_src_real2 loss_D_src_real.backward() outD_trg = model_D(F.softmax(trg_seg_score)) loss_D_trg_real1 = bce_loss( outD_trg, Variable(torch.FloatTensor( outD_trg.data.size()).fill_(1)).cuda()) / 2 outD_trg2 = model_D(F.softmax(trg_seg_score2)) loss_D_trg_real2 = bce_loss( outD_trg2, Variable(torch.FloatTensor( outD_trg2.data.size()).fill_(1)).cuda()) / 2 loss_D_trg_real = loss_D_trg_real1 + loss_D_trg_real2 loss_D_trg_real.backward() d_loss = loss_D_src_real.data + loss_D_trg_real.data optimizer.step() optimizer_D.step() for m in loss: train_writer.add_scalar(m, eval(m), i + 1) if (i + 1) % args.save_pred_every == 0: print 'taking snapshot ...' torch.save( model.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(i + 1) + '.pth')) torch.save( model_D.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(i + 1) + '_D.pth')) if (i + 1) % args.print_freq == 0: _t['iter time'].toc(average=False) print '[it %d][src seg loss %.4f][adv loss %.4f][d loss %.4f][agree loss %.4f][div loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_seg_src.data, loss_D_trg_fake.data,d_loss,loss_agree.data,loss_weight.data, optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff) if i + 1 > args.num_steps_stop: print 'finish training' break _t['iter time'].tic()
def main(): opt = TrainOptions() args = opt.initialize() _t = {'iter time': Timer()} model_name = args.source + '_to_' + args.target if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) sourceloader, targetloader = CreateSrcDataLoader( args), CreateTrgDataLoader(args) targetloader_iter, sourceloader_iter = iter(targetloader), iter( sourceloader) model, optimizer = CreateModel(args) model_D1, optimizer_D1 = CreateDiscriminator(args, 1) model_D2, optimizer_D2 = CreateDiscriminator(args, 2) start_iter = 0 if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) #train_writer = tensorboardX.SummaryWriter(os.path.join(args.snapshot_dir, "logs", model_name)) bce_loss = torch.nn.BCEWithLogitsLoss() interp_target = nn.Upsample(size=(1024, 1024), mode='bilinear', align_corners=True) interp_source = nn.Upsample(size=(1024, 1024), mode='bilinear', align_corners=True) cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D1.train() model_D1.cuda() model_D2.train() model_D2.cuda() weight_loss = WeightedBCEWithLogitsLoss() loss = [ 'loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real' ] _t['iter time'].tic() load_selected_samples = args.load_selected_samples if load_selected_samples is None: total_num = args.total_number else: clean_ids = [i_id.strip() for i_id in open(load_selected_samples)] total_num = len(clean_ids) remember_rate = args.remember_rate loss_list, name_list, dice_list = [], [], [] print('total_num:', total_num) predict_sum_disc = 0 predict_sum_cup = 0 noise_sum_disc = 0 noise_sum_cup = 0 threshold = 0.4 for i in range(start_iter, start_iter + total_num): model.adjust_learning_rate(args, optimizer, i) model_D1.adjust_learning_rate(args, optimizer_D1, i) model_D2.adjust_learning_rate(args, optimizer_D2, i) optimizer.zero_grad() optimizer_D1.zero_grad() optimizer_D2.zero_grad() ##train G for param in model_D1.parameters(): param.requires_grad = False for param in model_D2.parameters(): param.requires_grad = False #import pdb;pdb.set_trace() try: src_img, src_lbl, weight_map, name = sourceloader_iter.next() except StopIteration: sourceloader_iter = iter(sourceloader) src_img, src_lbl, weight_map, name = sourceloader_iter.next() src_img, src_lbl, weight_map = Variable(src_img).cuda(), Variable( src_lbl.long()).cuda(), Variable(weight_map.long()).cuda() src_seg_score1, src_seg_score2, src_seg_score3, src_seg_score4 = model( src_img, lbl=src_lbl, weight=None) loss_seg_src = model.loss loss_seg_src.backward() loss_list.append(loss_seg_src) name_list.append(name) print(i, name) #import pdb;pdb.set_trace() output = nn.functional.softmax(src_seg_score2, dim=1) output = nn.functional.upsample( output, (2056, 2124), mode='bilinear', align_corners=True).cpu().data[0].numpy() output = output.transpose(1, 2, 0) # (1634,1634,3) output_mask = np.asarray(np.argmax(output, axis=2), dtype=np.uint8) # (1644,1634) unique:[0,1,2] predict_disc_dice, predict_cup_dice = calculate_dice( args.data_dir, output_mask, name) print('===>predict disc_dice:' + str(round(predict_disc_dice, 3)) + '\t' + 'cup_dice:' + str(round(predict_cup_dice, 3))) #import pdb;pdb.set_trace() label = torch.unsqueeze(src_lbl, 0) label = nn.functional.upsample( label.float(), size=(2056, 2124), mode='bilinear', align_corners=True).cpu().data[0].numpy().squeeze() noise_disc_dice, noise_cup_dice = calculate_dice( args.data_dir, label, name) print('===>noise-included disc_dice:' + str(round(noise_disc_dice, 3)) + '\t' + 'cup_dice:' + str(round(noise_cup_dice, 3))) predict_sum_disc += predict_disc_dice predict_sum_cup += predict_cup_dice noise_sum_disc += noise_disc_dice noise_sum_cup += noise_cup_dice #import pdb;pdb.set_trace() if load_selected_samples is not None: if (2 - predict_disc_dice - predict_cup_dice) > threshold: src_seg_score1, src_seg_score2, src_seg_score3, src_seg_score4 = model( src_img, lbl=src_lbl, weight=weight_map) weightloss = 0.05 * model.loss print('weightloss:', weightloss) weightloss.backward() if args.data_label_folder_target is not None: trg_img, trg_lbl, _, _ = targetloader_iter.next() trg_img, trg_lbl = Variable(trg_img).cuda(), Variable( trg_lbl.long()).cuda() trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = model( trg_img, lbl=trg_lbl) loss_seg_trg = model.loss else: trg_img, _, _ = targetloader_iter.next() trg_img = Variable(trg_img).cuda() trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = model( trg_img) loss_seg_trg = 0 outD1_trg = model_D1(F.softmax(trg_seg_score1), 0) outD2_trg = model_D2(F.softmax(trg_seg_score2), 0) #import pdb;pdb.set_trace() outD1_trg = interp_target(outD1_trg) outD2_trg = interp_target(outD2_trg) if i > 9001: #import pdb;pdb.set_trace() weight_map1 = prob_2_entropy(F.softmax(trg_seg_score1)) weight_map2 = prob_2_entropy(F.softmax(trg_seg_score2)) loss_D1_trg_fake = weight_loss( outD1_trg, Variable(torch.FloatTensor( outD1_trg.data.size()).fill_(0)).cuda(), weight_map1, 0.3, 1) loss_D2_trg_fake = weight_loss( outD2_trg, Variable(torch.FloatTensor( outD2_trg.data.size()).fill_(0)).cuda(), weight_map2, 0.3, 1) else: loss_D1_trg_fake = model_D1.loss loss_D2_trg_fake = model_D2.loss #loss_D_trg_fake = model_D1.loss*0.2 + model_D2.loss loss_D_trg_fake = loss_D1_trg_fake * 0.2 + loss_D2_trg_fake loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_seg_trg loss_trg.backward() ###train D for param in model_D1.parameters(): param.requires_grad = True for param in model_D2.parameters(): param.requires_grad = True src_seg_score1, src_seg_score2, src_seg_score3, src_seg_score4, trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = src_seg_score1.detach( ), src_seg_score2.detach(), src_seg_score3.detach( ), src_seg_score4.detach(), trg_seg_score1.detach( ), trg_seg_score2.detach(), trg_seg_score3.detach( ), trg_seg_score4.detach() outD1_src = model_D1(F.softmax(src_seg_score1), 0) outD2_src = model_D2(F.softmax(src_seg_score2), 0) loss_D1_src_real = model_D1.loss / 2 loss_D1_src_real.backward() loss_D2_src_real = model_D2.loss / 2 loss_D2_src_real.backward() loss_D_src_real = loss_D1_src_real + loss_D2_src_real outD1_trg = model_D1(F.softmax(trg_seg_score1), 1) outD2_trg = model_D2(F.softmax(trg_seg_score2), 1) outD1_trg = interp_target(outD1_trg) outD2_trg = interp_target(outD2_trg) if i > 9001: weight_map1 = prob_2_entropy(F.softmax(trg_seg_score1)) weight_map2 = prob_2_entropy(F.softmax(trg_seg_score2)) loss_D1_trg_real = weight_loss( outD1_trg, Variable(torch.FloatTensor( outD1_trg.data.size()).fill_(1)).cuda(), weight_map1, 0.3, 1) / 2 loss_D2_trg_real = weight_loss( outD2_trg, Variable(torch.FloatTensor( outD2_trg.data.size()).fill_(1)).cuda(), weight_map2, 0.3, 1) / 2 else: loss_D1_trg_real = model_D1.loss / 2 loss_D2_trg_real = model_D2.loss / 2 loss_D1_trg_real.backward() loss_D2_trg_real.backward() loss_D_trg_real = loss_D1_trg_real + loss_D2_trg_real optimizer.step() optimizer_D1.step() optimizer_D2.step() # for m in loss: # train_writer.add_scalar(m, eval(m), i+1) if (i + 1 == start_iter + total_num) and load_selected_samples is not None: print('taking snapshot ', args.snapshot_dir, args.source + '_' + str(total_num)) torch.save( model.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(total_num) + '.pth')) torch.save( model_D1.state_dict(), os.path.join( args.snapshot_dir, '%s_' % (args.source) + str(total_num) + '_D1.pth')) torch.save( model_D2.state_dict(), os.path.join( args.snapshot_dir, '%s_' % (args.source) + str(total_num) + '_D2.pth')) if (i + 1) % args.print_freq == 0: _t['iter time'].toc(average=False) print ('[it %d][src seg loss %.4f][trg loss %.4f][trg seg loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_seg_src.data,loss_trg.data, loss_seg_trg.data,optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff)) if i + 1 > args.num_steps_stop: print('finish training') break _t['iter time'].tic() if i + 1 == start_iter + total_num and load_selected_samples is None: ind_sorted = np.argsort(loss_list) loss_sorted = np.array(loss_list)[ind_sorted] num_remember = int(remember_rate * len(loss_sorted)) clean_ind_update = ind_sorted[:num_remember] clean_name_update = np.array(name_list)[clean_ind_update] #import pdb;pdb.set_trace() #dice = np.array(dice_list)[clean_ind_update] noise_ind_sorted = np.argsort(-np.array(loss_list)) noise_loss_sorted = np.array(loss_list)[noise_ind_sorted] noise_num_remember = int(remember_rate * len(noise_loss_sorted)) noise_ind_update = noise_ind_sorted[:noise_num_remember] noise_name_update = np.array(name_list)[noise_ind_update] with open(os.path.join(args.save_selected_samples), "w") as f: for i in range(len(clean_name_update)): #f.write(str(clean_name_update[i][0]) +'\t'+ str(dice[:,0][i]) + '\t'+ str(dice[:,1][i]) +'\n') f.write(str(clean_name_update[i][0]) + '\n') with open(os.path.join(args.noise_selected_samples), "w") as g: for j in range(len(noise_name_update)): g.write(str(noise_name_update[j][0]) + '\n') print(args.save_selected_samples, 'Sample selection finished!') break print('\n predict disc_coef = {0:.4f}, cup_coef = {1:.4f}'.format( predict_sum_disc / total_num, predict_sum_cup / total_num)) print('\n noise-included disc_coef = {0:.4f}, cup_coef = {1:.4f}'.format( noise_sum_disc / total_num, noise_sum_cup / total_num))
def main(): opt = TrainOptions() args = opt.initialize() _t = {'iter time': Timer()} if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) sourceloader, targetloader = CreateActSrcDataLoader( args), CreateActTrgDataLoader(args, 'train') testloader = CreateActTrgDataLoader(args, 'test') targetloader_iter, sourceloader_iter = iter(targetloader), iter( sourceloader) model, optimizer = CreateModel(args) model_D, optimizer_D = CreateDiscriminator(args) start_iter = 0 if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) train_writer = tensorboardX.SummaryWriter( os.path.join(args.snapshot_dir, "logs")) bce_loss = torch.nn.BCEWithLogitsLoss() cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D.train() model_D.cuda() loss = [ 'loss_src', 'loss_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real', 'eval_loss' ] _t['iter time'].tic() best_loss_eval = None best_step = 0 eval_loss = np.array([0]) for i in range(start_iter, args.num_steps): model.module.adjust_learning_rate(args, optimizer, i) model_D.module.adjust_learning_rate(args, optimizer_D, i) optimizer.zero_grad() optimizer_D.zero_grad() for param in model_D.parameters(): param.requires_grad = False try: src_img, src_lbl, _, _ = next(sourceloader_iter) except StopIteration: sourceloader_iter = iter(sourceloader) src_img, src_lbl, _, _ = next(sourceloader_iter) src_img, src_lbl = Variable(src_img).cuda(), Variable( src_lbl.long()).cuda() src_score, loss_src = model(src_img, lbl=src_lbl) loss_src.mean().backward() try: trg_img, trg_lbl, _, _ = next(targetloader_iter) except StopIteration: targetloader_iter = iter(targetloader) trg_img, trg_lbl, _, _ = next(targetloader_iter) trg_img, trg_lbl = Variable(trg_img).cuda(), Variable( trg_lbl.long()).cuda() trg_score, loss_trg = model(trg_img, lbl=trg_lbl) outD_trg, loss_D_trg_fake = model_D(F.softmax(trg_score, dim=1), 0) # do not apply softmax loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_trg loss_trg.mean().backward() for param in model_D.parameters(): param.requires_grad = True src_score, trg_score = src_score.detach(), trg_score.detach() outD_src, model_D_loss = model_D(F.softmax(src_score, dim=1), 0) # do not apply softmax loss_D_src_real = model_D_loss / 2 loss_D_src_real.mean().backward() outD_trg, model_D_loss = model_D(F.softmax(trg_score, dim=1), 1) # do not apply softmax loss_D_trg_real = model_D_loss / 2 loss_D_trg_real.mean().backward() optimizer.step() optimizer_D.step() for m in loss: train_writer.add_scalar(m, eval(m).mean(), i + 1) if (i + 1) % args.save_pred_every == 0: with torch.no_grad(): model.eval() eval_loss = 0 for test_img, test_lbl, _, _ in testloader: test_score, loss_test = model(test_img, lbl=test_lbl) eval_loss += loss_test.mean().item() * test_img.size(0) eval_loss /= len(testloader.dataset) if best_loss_eval == None or eval_loss < best_loss_eval: best_loss_eval = eval_loss best_step = i + 1 print('taking snapshot ... eval_loss: {}'.format(eval_loss)) torch.save( model.module.state_dict(), os.path.join(args.snapshot_dir, str(i + 1) + '.pth')) eval_loss = np.array([eval_loss]) if (i + 1) % args.print_freq == 0: _t['iter time'].toc(average=False) print('[it %d][src loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_src.mean().data, optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff)) if i + 1 > args.num_steps_stop: print('finish training') break _t['iter time'].tic()
def main(): opt = TrainOptions() args = opt.initialize() _t = {'iter time': Timer()} model_name = args.source + '_to_' + args.target if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) os.makedirs(os.path.join(args.snapshot_dir, 'logs')) opt.print_options(args) sourceloader, targetloader = CreateSrcDataLoader( args), CreateTrgDataLoader(args) targetloader_iter, sourceloader_iter = iter(targetloader), iter( sourceloader) model, optimizer = CreateModel(args) model_D1, optimizer_D1 = CreateDiscriminator(args, 1) model_D2, optimizer_D2 = CreateDiscriminator(args, 2) start_iter = 0 if args.restore_from is not None: start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1]) train_writer = tensorboardX.SummaryWriter( os.path.join(args.snapshot_dir, "logs", model_name)) bce_loss = torch.nn.BCEWithLogitsLoss() interp_target = nn.Upsample(size=(1024, 1024), mode='bilinear', align_corners=True) interp_source = nn.Upsample(size=(1024, 1024), mode='bilinear', align_corners=True) cudnn.enabled = True cudnn.benchmark = True model.train() model.cuda() model_D1.train() model_D1.cuda() model_D2.train() model_D2.cuda() weight_loss = WeightedBCEWithLogitsLoss() weight_map_loss = WeightMapLoss() loss = [ 'loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real' ] _t['iter time'].tic() for i in range(start_iter, args.num_steps): print(i) model.adjust_learning_rate(args, optimizer, i) model_D1.adjust_learning_rate(args, optimizer_D1, i) model_D2.adjust_learning_rate(args, optimizer_D2, i) optimizer.zero_grad() optimizer_D1.zero_grad() optimizer_D2.zero_grad() ##train G for param in model_D1.parameters(): param.requires_grad = False for param in model_D2.parameters(): param.requires_grad = False try: src_img, src_lbl, weight_map, _ = sourceloader_iter.next() except StopIteration: sourceloader_iter = iter(sourceloader) src_img, src_lbl, weight_map, _ = sourceloader_iter.next() src_img, src_lbl, weight_map = Variable(src_img).cuda(), Variable( src_lbl.long()).cuda(), Variable(weight_map.long()).cuda() src_seg_score1, src_seg_score2, src_seg_score3, src_seg_score4 = model( src_img, lbl=src_lbl, weight=weight_map) #import pdb;pdb.set_trace() #WeightLoss1 = weight_map_loss(src_seg_score1, src_lbl, weight_map) #WeightLoss2 = weight_map_loss(src_seg_score2, src_lbl, weight_map) loss_seg_src = model.loss #print('WeightLoss2, WeightLoss1:', WeightLoss2.data, WeightLoss1.data) loss_seg_src.backward() if args.data_label_folder_target is not None: trg_img, trg_lbl, _, name = targetloader_iter.next() trg_img, trg_lbl = Variable(trg_img).cuda(), Variable( trg_lbl.long()).cuda() trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = model( trg_img, lbl=trg_lbl) loss_seg_trg = model.loss else: trg_img, _, name = targetloader_iter.next() trg_img = Variable(trg_img).cuda() trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = model( trg_img) loss_seg_trg = 0 outD1_trg = model_D1(F.softmax(trg_seg_score1), 0) outD2_trg = model_D2(F.softmax(trg_seg_score2), 0) #import pdb;pdb.set_trace() outD1_trg = interp_target(outD1_trg) #[1, 1, 1024, 1024] outD2_trg = interp_target(outD2_trg) ''' if i > 9001: #import pdb;pdb.set_trace() weight_map1 = prob_2_entropy(F.softmax(trg_seg_score1)) #[1, 1, 1024, 1024] weight_map2 = prob_2_entropy(F.softmax(trg_seg_score2)) #[1, 1, 1024, 1024] loss_D1_trg_fake = weight_loss(outD1_trg, Variable(torch.FloatTensor(outD1_trg.data.size()).fill_(0)).cuda(), weight_map1, 0.3, 1) loss_D2_trg_fake = weight_loss(outD2_trg, Variable(torch.FloatTensor(outD2_trg.data.size()).fill_(0)).cuda(), weight_map2, 0.3, 1) else: loss_D1_trg_fake = model_D1.loss loss_D2_trg_fake = model_D2.loss loss_D_trg_fake = loss_D1_trg_fake*0.2 + loss_D2_trg_fake ''' loss_D_trg_fake = model_D1.loss * 0.2 + model_D2.loss loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_seg_trg loss_trg.backward() ###train D for param in model_D1.parameters(): param.requires_grad = True for param in model_D2.parameters(): param.requires_grad = True src_seg_score1, src_seg_score2, src_seg_score3, src_seg_score4, trg_seg_score1, trg_seg_score2, trg_seg_score3, trg_seg_score4 = src_seg_score1.detach( ), src_seg_score2.detach(), src_seg_score3.detach( ), src_seg_score4.detach(), trg_seg_score1.detach( ), trg_seg_score2.detach(), trg_seg_score3.detach( ), trg_seg_score4.detach() outD1_src = model_D1(F.softmax(src_seg_score1), 0) outD2_src = model_D2(F.softmax(src_seg_score2), 0) loss_D1_src_real = model_D1.loss / 2 loss_D1_src_real.backward() loss_D2_src_real = model_D2.loss / 2 loss_D2_src_real.backward() loss_D_src_real = loss_D1_src_real + loss_D2_src_real outD1_trg = model_D1(F.softmax(trg_seg_score1), 1) outD2_trg = model_D2(F.softmax(trg_seg_score2), 1) outD1_trg = interp_target(outD1_trg) outD2_trg = interp_target(outD2_trg) if i > 9001: weight_map1 = prob_2_entropy(F.softmax(trg_seg_score1)) weight_map2 = prob_2_entropy(F.softmax(trg_seg_score2)) loss_D1_trg_real = weight_loss( outD1_trg, Variable(torch.FloatTensor( outD1_trg.data.size()).fill_(1)).cuda(), weight_map1, 0.3, 1) / 2 loss_D2_trg_real = weight_loss( outD2_trg, Variable(torch.FloatTensor( outD2_trg.data.size()).fill_(1)).cuda(), weight_map2, 0.3, 1) / 2 else: loss_D1_trg_real = model_D1.loss / 2 loss_D2_trg_real = model_D2.loss / 2 loss_D1_trg_real.backward() loss_D2_trg_real.backward() loss_D_trg_real = loss_D1_trg_real + loss_D2_trg_real optimizer.step() optimizer_D1.step() optimizer_D2.step() for m in loss: train_writer.add_scalar(m, eval(m), i + 1) if (i + 1) % args.save_pred_every == 0: print('taking snapshot ...') torch.save( model.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(i + 1) + '.pth')) torch.save( model_D1.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(i + 1) + '_D1.pth')) torch.save( model_D2.state_dict(), os.path.join(args.snapshot_dir, '%s_' % (args.source) + str(i + 1) + '_D2.pth')) if (i + 1) % args.print_freq == 0: _t['iter time'].toc(average=False) print ('[it %d][src seg loss %.4f][trg seg loss %.4f][lr %.4f][%.2fs]' % \ (i + 1, loss_seg_src.data,loss_seg_trg.data, optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff)) if i + 1 > args.num_steps_stop: print('finish training') break _t['iter time'].tic()