class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = DQNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = DQNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # Get max predicted Q values (for next states) from target model Q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class YellowBananaThief: """ A smart agent that interacts with the environment to pick up yellow bananas""" def __init__(self, state_size, action_size, seed=0, buffer_size=100000, batch_size=64, update_frequency=2, gamma=.99, learning_rate=5e-4, tau=1e-3): self.state_size = state_size self.action_size = action_size self.random = random.seed(seed) self.batch_size = batch_size self.memory = ReplayBuffer(self.action_size, buffer_size, batch_size, seed) self.time_step = 0 self.update_frequency = update_frequency self.qnetwork_local = DQNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = DQNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=learning_rate) # hyper-parameters self.gamma = gamma self.tau = tau def act(self, state, epsilon): """ Returns an epsilon greedy action to take in the current state :param state: The current state in the environment :param epsilon: Epsilon value to apply epsilon-greedy action selection """ def action_probabilities(action_vals, eps, num_actions): """ Determine the epsilon probabilities of choosing actions """ probs = np.ones(num_actions, dtype=float) * (eps / num_actions) best_action = np.argmax(action_vals) probs[best_action] += (1. - eps) return probs state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval( ) # get the network in evaluation mode and pull values from it with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # get the network back into train mode action_probs = action_probabilities(action_values.cpu().data.numpy(), epsilon, self.action_size) return np.random.choice(np.arange(self.action_size), p=action_probs) def step(self, state, action, reward, next_state, done): """ Step forward to train the model """ self.memory.add(state, action, reward, next_state, done) self.time_step = (self.time_step + 1) % self.update_frequency if self.time_step == 0: if len(self.memory) > self.batch_size: # enough samples have been collected for learning from experience experiences = self.memory.sample() self.learn(experiences) def learn(self, experiences): """ Train the agent from a sample of experiences """ def soft_update(local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) states, actions, rewards, next_states, dones = experiences # max predicted Q values for the next state q_targets_next = self.qnetwork_target(next_states).detach().max( 1)[0].unsqueeze(1) # Q targets for current state q_targets = rewards + (self.gamma * q_targets_next * (1 - dones)) # get expected q values from local model q_expected = self.qnetwork_local(states).gather(1, actions) # compute model loss loss = F.mse_loss(q_expected, q_targets) # minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() soft_update(self.qnetwork_local, self.qnetwork_target, self.tau) def local_qnet(self): """ Returns the trained model """ return self.qnetwork_local