class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = DQNetwork(state_size, action_size,
                                        seed).to(device)
        self.qnetwork_target = DQNetwork(state_size, action_size,
                                         seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.
        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model

        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
class YellowBananaThief:
    """ A smart agent that interacts with the environment to pick up yellow bananas"""
    def __init__(self,
                 state_size,
                 action_size,
                 seed=0,
                 buffer_size=100000,
                 batch_size=64,
                 update_frequency=2,
                 gamma=.99,
                 learning_rate=5e-4,
                 tau=1e-3):
        self.state_size = state_size
        self.action_size = action_size
        self.random = random.seed(seed)
        self.batch_size = batch_size

        self.memory = ReplayBuffer(self.action_size, buffer_size, batch_size,
                                   seed)
        self.time_step = 0
        self.update_frequency = update_frequency

        self.qnetwork_local = DQNetwork(state_size, action_size,
                                        seed).to(device)
        self.qnetwork_target = DQNetwork(state_size, action_size,
                                         seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(),
                                    lr=learning_rate)

        # hyper-parameters
        self.gamma = gamma
        self.tau = tau

    def act(self, state, epsilon):
        """ Returns an epsilon greedy action to take in the current state
            :param state: The current state in the environment
            :param epsilon: Epsilon value to apply epsilon-greedy action selection
        """
        def action_probabilities(action_vals, eps, num_actions):
            """ Determine the epsilon probabilities of choosing actions """
            probs = np.ones(num_actions, dtype=float) * (eps / num_actions)
            best_action = np.argmax(action_vals)
            probs[best_action] += (1. - eps)
            return probs

        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval(
        )  # get the network in evaluation mode and pull values from it
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()  # get the network back into train mode

        action_probs = action_probabilities(action_values.cpu().data.numpy(),
                                            epsilon, self.action_size)
        return np.random.choice(np.arange(self.action_size), p=action_probs)

    def step(self, state, action, reward, next_state, done):
        """ Step forward to train the model """
        self.memory.add(state, action, reward, next_state, done)
        self.time_step = (self.time_step + 1) % self.update_frequency
        if self.time_step == 0:
            if len(self.memory) > self.batch_size:
                # enough samples have been collected for learning from experience
                experiences = self.memory.sample()
                self.learn(experiences)

    def learn(self, experiences):
        """ Train the agent from a sample of experiences """
        def soft_update(local_model, target_model, tau):
            """Soft update model parameters.
                   θ_target = τ*θ_local + (1 - τ)*θ_target

                   Params
                   ======
                       local_model (PyTorch model): weights will be copied from
                       target_model (PyTorch model): weights will be copied to
                       tau (float): interpolation parameter
                   """
            for target_param, local_param in zip(target_model.parameters(),
                                                 local_model.parameters()):
                target_param.data.copy_(tau * local_param.data +
                                        (1.0 - tau) * target_param.data)

        states, actions, rewards, next_states, dones = experiences

        # max predicted Q values for the next state
        q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Q targets for current state
        q_targets = rewards + (self.gamma * q_targets_next * (1 - dones))

        # get expected q values from local model
        q_expected = self.qnetwork_local(states).gather(1, actions)

        # compute model loss
        loss = F.mse_loss(q_expected, q_targets)

        # minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)

    def local_qnet(self):
        """ Returns the trained model """
        return self.qnetwork_local