num_workers=n_cpu, drop_last=True) # dataset.__len__() : 47 (dataset/bs) # the 8 golf swing events are classes 0 through 7, no-event is class 8 # the ratio of events to no-events is approximately 1:35 so weight classes accordingly: # TODO: edit weights shape from golf-8-element to stsq-12-element if use_no_element == False: weights = torch.FloatTensor([1/3, 1, 2/5, 1/3, 1/6, 1, 1/4, 1, 1/4, 1/3, 1/2, 1/6]).to(device) else: weights = torch.FloatTensor([1/3, 1, 2/5, 1/3, 1/6, 1, 1/4, 1, 1/4, 1/3, 1/2, 1/6, 1/60]).to(device) criterion = torch.nn.CrossEntropyLoss(weight=weights) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) ##lambda:無名関数 losses = AverageMeter() #print('utils.py, class AverageMeter()') if not os.path.exists('models'): os.mkdir('models') epoch = 0 for epoch in range(int(iterations)): # while i < int(iterations): for sample in tqdm(data_loader): images, labels = sample['images'].to(device), sample['labels'].to(device) logits = model(images)
seq_length=seq_length, train=True) data_loader = DataLoader(dataset, batch_size=bs, shuffle=True, num_workers=n_cpu, drop_last=True) # the 8 golf swing events are classes 0 through 7, no-event is class 8 # the ratio of events to no-events is approximately 1:35 so weight classes accordingly: weights = torch.FloatTensor( [1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/35]).cuda() criterion = torch.nn.CrossEntropyLoss(weight=weights) optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) losses = AverageMeter() # writer = SummaryWriter() if not os.path.exists('models'): os.mkdir('models') i = 0 while i < iterations: # for p in optimizer.param_groups: # print(p['lr']) for sample in data_loader: images, labels = sample['images'].cuda(), sample['labels'].cuda() logits = model(images)
noise_level=noise_level) data_loader = DataLoader(dataset, batch_size=bs, shuffle=True, num_workers=n_cpu, drop_last=True) # the 8 golf swing events are classes 0 through 7, no-event is class 8 # the ratio of events to no-events is approximately 1:35 so weight classes accordingly: weights = torch.FloatTensor( [1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 35]).cuda() criterion = torch.nn.CrossEntropyLoss(weight=weights) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) losses = AverageMeter() if not os.path.exists('models'): os.mkdir('models') i = 0 while i < iterations: for sample in data_loader: images, labels = sample['images'].cuda(), sample['labels'].cuda() logits = model(images)
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), train=True, noise_level=noise_level) data_loader = DataLoader(dataset, batch_size=bs, shuffle=True, num_workers=n_cpu, drop_last=True) # the 8 golf swing events are classes 0 through 7, no-event is class 8 # the ratio of events to no-events is approximately 1:35 so weight classes accordingly: weights = torch.FloatTensor([1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/35]).to(device) criterion = torch.nn.CrossEntropyLoss(weight=weights) if config['Adam']: optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config['learning_rate']) #todo(default):0.001 else: optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=config['learning_rate']) #todo(default):0.001 losses = AverageMeter() if not os.path.exists('models'): os.mkdir('models') i = 0 while i < iterations: for sample in data_loader: images, labels = sample['images'].to(device), sample['labels'].to(device) logits = model(images) if bool_classical_loss: