示例#1
0
                             num_workers=n_cpu,
                             drop_last=True)

    # dataset.__len__() : 47 (dataset/bs)
                  

    # the 8 golf swing events are classes 0 through 7, no-event is class 8
    # the ratio of events to no-events is approximately 1:35 so weight classes accordingly:
    # TODO: edit weights shape from golf-8-element to stsq-12-element
    if use_no_element == False:
        weights = torch.FloatTensor([1/3, 1, 2/5, 1/3, 1/6, 1, 1/4, 1, 1/4, 1/3, 1/2, 1/6]).to(device)
    else:
        weights = torch.FloatTensor([1/3, 1, 2/5, 1/3, 1/6, 1, 1/4, 1, 1/4, 1/3, 1/2, 1/6, 1/60]).to(device)

    criterion = torch.nn.CrossEntropyLoss(weight=weights)
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)  ##lambda:無名関数

    losses = AverageMeter()
    #print('utils.py, class AverageMeter()')

    if not os.path.exists('models'):
        os.mkdir('models')



    epoch = 0
    for epoch in range(int(iterations)):
    # while i < int(iterations):
        for sample in tqdm(data_loader):
            images, labels = sample['images'].to(device), sample['labels'].to(device)
            logits = model(images)       
示例#2
0
                       seq_length=seq_length,
                       train=True)

    data_loader = DataLoader(dataset,
                             batch_size=bs,
                             shuffle=True,
                             num_workers=n_cpu,
                             drop_last=True)

    # the 8 golf swing events are classes 0 through 7, no-event is class 8
    # the ratio of events to no-events is approximately 1:35 so weight classes accordingly:
    weights = torch.FloatTensor(
        [1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/35]).cuda()
    criterion = torch.nn.CrossEntropyLoss(weight=weights)
    optimizer = torch.optim.Adam(
        filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)

    losses = AverageMeter()

    # writer = SummaryWriter()

    if not os.path.exists('models'):
        os.mkdir('models')

    i = 0
    while i < iterations:
        # for p in optimizer.param_groups:
        #     print(p['lr'])
        for sample in data_loader:
            images, labels = sample['images'].cuda(), sample['labels'].cuda()
            logits = model(images)
                     noise_level=noise_level)

    data_loader = DataLoader(dataset,
                             batch_size=bs,
                             shuffle=True,
                             num_workers=n_cpu,
                             drop_last=True)

    # the 8 golf swing events are classes 0 through 7, no-event is class 8
    # the ratio of events to no-events is approximately 1:35 so weight classes accordingly:
    weights = torch.FloatTensor(
        [1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8, 1 / 8,
         1 / 35]).cuda()
    criterion = torch.nn.CrossEntropyLoss(weight=weights)
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                        model.parameters()),
                                 lr=0.001)

    losses = AverageMeter()

    if not os.path.exists('models'):
        os.mkdir('models')

    i = 0
    while i < iterations:

        for sample in data_loader:

            images, labels = sample['images'].cuda(), sample['labels'].cuda()

            logits = model(images)
                                                   Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
                     train=True,
                     noise_level=noise_level)

    data_loader = DataLoader(dataset,
                             batch_size=bs,
                             shuffle=True,
                             num_workers=n_cpu,
                             drop_last=True)

    # the 8 golf swing events are classes 0 through 7, no-event is class 8
    # the ratio of events to no-events is approximately 1:35 so weight classes accordingly:
    weights = torch.FloatTensor([1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/35]).to(device)
    criterion = torch.nn.CrossEntropyLoss(weight=weights)
    if config['Adam']:
        optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config['learning_rate']) #todo(default):0.001
    else:
        optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=config['learning_rate']) #todo(default):0.001

    losses = AverageMeter()

    if not os.path.exists('models'):
        os.mkdir('models')

    i = 0
    while i < iterations:
        for sample in data_loader:
            images, labels = sample['images'].to(device), sample['labels'].to(device)
            logits = model(images)

            if bool_classical_loss: