def _build_models(self): gpu_flag = torch.cuda.is_available() extractor = Extractor() classifier = Classifier() discriminator = Discrimimator() if gpu_flag: self.device = torch.device('cuda:0') else: self.device = torch.device('cpu') self.extractor = extractor.to(self.device) self.classifier = classifier.to(self.device) self.discriminator = discriminator.to(self.device)
batch_size=Batch_size_t, shuffle=True, num_workers=2) source_training_loader_e = Data.DataLoader(dataset=source_training_dataset, batch_size=Batch_size_s, shuffle=True, num_workers=2) target_loader_e = Data.DataLoader(dataset=target_dataset, batch_size=Batch_size_t, shuffle=True, num_workers=2) #Training device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") E.to(device) D.to(device) R.to(device) for epoch in range(num_epochs): print('Epoch:', epoch + 1, 'Training') # Evaluate Step if epoch % 3 == 0: # 1. Source_validation source_validation_loss, source_validation_error = evaluate( E, R, source_validation_loader, length_source_validation) # 2. Source_training source_training_loss, source_training_error = evaluate( E, R, source_training_loader_d, length_source_training) # 3. Target target_loss, target_error = evaluate(E, R, target_loader_d, length_target)