width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True) datagen.fit(train_x) #valid_x, valid_y = load_data('valid', 'train') #model = load_model('model') #model.save_weights('weight') model = build_model() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #model.load_weights('best_w') history = History() model.fit_generator( datagen.flow(train_x, train_y, batch_size=128), steps_per_epoch=len(train_x) / 128 * 8, #steps_per_epoch = 1, epochs=50, #validation_data = (valid_x, valid_y), callbacks=[history]) history.save('history') model.save(model_path) #model.save_weights('weight') #print('\nvalid:', model.evaluate(valid_x, valid_y)[1]) exit()
history1 = History() model = build_model() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( datagen.flow(data1_x, data1_y, batch_size=128), steps_per_epoch=len(data1_x) / 128 * 4, #steps_per_epoch = 1, epochs=50, validation_data=(valid_x, valid_y), callbacks=[history1]) #model.fit(data1_x, data1_y, batch_size = 128, epochs = 100, validation_data = (valid_x, valid_y), callbacks = [history1]) model.save('self_model') history1.save('history1') datagen.fit(data2_x) history2 = History() data2_y = to_categorical(model.predict_classes(data2_x, batch_size=128), 7) model2 = build_model() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( datagen.flow(data2_x, data2_y, batch_size=128), steps_per_epoch=len(data2_x) / 128 * 4, #steps_per_epoch = 1, epochs=50,
rotation_range = 3, width_shift_range = 0.1, height_shift_range = 0.1, zoom_range = 0.1, horizontal_flip = True) datagen.fit(train_x) valid_x, valid_y = load_data('valid', 'train') #model = load_model('model') #model.save_weights('weight') model = build_dnn_model() model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) #model.load_weights('best_w') history = History() model.fit_generator( datagen.flow(train_x, train_y, batch_size = 128), steps_per_epoch = len(train_x) / 128 * 2, #steps_per_epoch = 1, epochs = 50, validation_data = (valid_x, valid_y), callbacks = [history]) history.save('dnn_history') #model.save(model_path) #model.save_weights('weight') print('\nvalid:', model.evaluate(valid_x, valid_y)[1]) exit()