def __init__(self, rng): Network.__init__(self, n_hidden_layer=n_hidden_layer, BN_LSTM=BN_LSTM) print("LSTM layer:") self.layer.append( LSTM(rng=rng, n_inputs=n_inputs, n_units=n_units, initial_gamma=initial_gamma, initial_beta=initial_beta, length=length - 1, batch_size=batch_size, BN=BN_LSTM, BN_epsilon=BN_epsilon, dropout=dropout_input, binary_training=binary_training, ternary_training=ternary_training, stochastic_training=stochastic_training)) print("Softmax layer:") self.layer.append( linear_layer(rng=rng, n_inputs=n_units, n_units=n_classes, dropout=dropout_input))
def __init__(self, rng): Network.__init__(self, n_hidden_layer=n_hidden_layer, BN=BN) print " Fully connected layer 1:" self.layer.append( ReLU_layer(rng=rng, n_inputs=n_inputs, n_units=n_units, BN=BN, BN_epsilon=BN_epsilon, dropout=dropout_input, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) for k in range(n_hidden_layer - 1): print " Fully connected layer " + str(k) + ":" self.layer.append( ReLU_layer(rng=rng, n_inputs=n_units, n_units=n_units, BN=BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " L2 SVM layer:" self.layer.append( linear_layer(rng=rng, n_inputs=n_units, n_units=n_classes, BN=BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test))
def __init__(self, rng): Network.__init__(self, n_hidden_layer = n_hidden_layer, BN = BN) print " Fully connected layer 1:" self.layer.append(ReLU_layer(rng = rng, n_inputs = n_inputs, n_units = n_units, BN = BN, BN_epsilon=BN_epsilon, dropout=dropout_input, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) for k in range(n_hidden_layer-1): print " Fully connected layer "+ str(k) +":" self.layer.append(ReLU_layer(rng = rng, n_inputs = n_units, n_units = n_units, BN = BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " L2 SVM layer:" self.layer.append(linear_layer(rng = rng, n_inputs = n_units, n_units = n_classes, BN = BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test))
def __init__(self, rng): Network.__init__(self, n_hidden_layer=8, BN=BN) print " C3 layer:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(128, 3, 3, 3), pool_shape=(1, 1), pool_stride=(1, 1), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C3 P2 layers:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(128, 128, 3, 3), pool_shape=(2, 2), pool_stride=(2, 2), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C2 layer:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(256, 128, 2, 2), pool_shape=(1, 1), pool_stride=(1, 1), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C2 P2 layers:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(256, 256, 2, 2), pool_shape=(2, 2), pool_stride=(2, 2), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C2 layer:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(512, 256, 2, 2), pool_shape=(1, 1), pool_stride=(1, 1), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C2 P2 layers:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(512, 512, 2, 2), pool_shape=(2, 2), pool_stride=(2, 2), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " C2 layer:" self.layer.append( ReLU_conv_layer(rng, filter_shape=(1024, 512, 2, 2), pool_shape=(1, 1), pool_stride=(1, 1), BN=BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " FC layer:" self.layer.append( ReLU_layer(rng=rng, n_inputs=1024, n_units=1024, BN=BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test)) print " L2 SVM layer:" self.layer.append( linear_layer(rng=rng, n_inputs=1024, n_units=10, BN=BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test))
def __init__(self, rng): Network.__init__(self, n_hidden_layer = 8, BN = BN) print " C3 layer:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(128, 3, 3, 3), pool_shape=(1,1), pool_stride=(1,1), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C3 P2 layers:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(128, 128, 3, 3), pool_shape=(2,2), pool_stride=(2,2), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C2 layer:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(256, 128, 2, 2), pool_shape=(1,1), pool_stride=(1,1), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C2 P2 layers:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(256, 256, 2, 2), pool_shape=(2,2), pool_stride=(2,2), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C2 layer:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(512, 256, 2, 2), pool_shape=(1,1), pool_stride=(1,1), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C2 P2 layers:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(512, 512, 2, 2), pool_shape=(2,2), pool_stride=(2,2), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " C2 layer:" self.layer.append(ReLU_conv_layer( rng, filter_shape=(1024, 512, 2, 2), pool_shape=(1,1), pool_stride=(1,1), BN = BN, BN_epsilon=BN_epsilon, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " FC layer:" self.layer.append(ReLU_layer( rng = rng, n_inputs = 1024, n_units = 1024, BN = BN, BN_epsilon=BN_epsilon, dropout=dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test )) print " L2 SVM layer:" self.layer.append(linear_layer( rng = rng, n_inputs= 1024, n_units = 10, BN = BN, BN_epsilon=BN_epsilon, dropout = dropout_hidden, binary_training=binary_training, stochastic_training=stochastic_training, binary_test=binary_test, stochastic_test=stochastic_test ))
def __init__(self): Network.__init__(self)