示例#1
0
 def __init__(self):
     self.model = PointNet().to(device)
     #self.model = PFFNet().to(device)
     self.lr = 1e-4
     self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
     self.criterion = torch.nn.CrossEntropyLoss()
     self.epoches = 20
示例#2
0
class PointNetTrainer():
    def __init__(self):
        self.model = PointNet().to(device)
        #self.model = PFFNet().to(device)
        self.lr = 1e-4
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
        self.criterion = torch.nn.CrossEntropyLoss()
        self.epoches = 20

    def train(self, loader):
        self.model.train()

        total_loss = 0
        tot_num = 0
        for i, data in enumerate(tqdm.tqdm(loader)):
            tot_num += len(data.y)
            data = data.to(device)
            self.optimizer.zero_grad()
            logits = self.model(data.pos, data.batch)
            loss = self.criterion(logits, data.y)
            loss.backward()
            self.optimizer.step()
            total_loss += loss.item()

        return total_loss / tot_num

    @torch.no_grad()
    def test(self, loader):
        self.model.eval()

        total_correct = 0
        tot_num = 0
        for i, data in enumerate(loader):
            if i > 50:
                break
            tot_num += len(data.y)
            data = data.to(device)
            logits = self.model(data.pos, data.batch)
            pred = logits.argmax(dim=-1)
            total_correct += (pred == data.y).sum()

        #print(total_correct,tot_num)
        return total_correct / tot_num

    def work(self, train_loader, test_loader):
        plt.figure()
        losses = []
        accs = []
        for epoch in range(self.epoches):
            loss = self.train(train_loader)
            acc = self.test(test_loader)
            print("epoch", epoch, "loss", loss, "acc", acc)
            losses.append(loss)
            accs.append(acc)

        plt.plot(losses)
        plt.plot(accs)
        plt.legend(['loss', 'acc'])
        plt.savefig('dump/curve.png')
示例#3
0
def test(args, io):
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)
    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    else:
        raise Exception("Not implemented")
    print(str(model))

    model = nn.DataParallel(model)
    checkpoint = torch.load(args.resume)
    model.load_state_dict(checkpoint['state_dict'])
    model = model.eval()
    test_acc = 0.0
    count = 0.0
    test_true = []
    test_pred = []
    SHAPE_NAMES = [line.rstrip() for line in \
                   open('data/modelnet40_ply_hdf5_2048/shape_names.txt')]
    NUM_CLASSES = 40
    total_seen_class = [0 for _ in range(NUM_CLASSES)]
    total_correct_class = [0 for _ in range(NUM_CLASSES)]
    for data, label in test_loader:
        data, label = data.to(device), label.to(device).squeeze()
        data = data.permute(0, 2, 1)
        batch_size = data.size()[0]
        logits = model(data)
        preds = logits.max(dim=1)[1]
        test_true.append(label.cpu().numpy())
        test_pred.append(preds.detach().cpu().numpy())
    test_true = np.concatenate(test_true)
    test_pred = np.concatenate(test_pred)
    test_acc = metrics.accuracy_score(test_true, test_pred)
    avg_per_class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
    outstr = 'Test :: test acc: %.6f, test avg acc: %.6f' % (test_acc,
                                                             avg_per_class_acc)
    io.cprint(outstr)
    for i in range(test_true.shape[0]):
        l = test_true[i]
        total_seen_class[l] += 1
        total_correct_class[l] += (test_pred[i] == l)
    class_accuracies = np.array(total_correct_class) / np.array(
        total_seen_class, dtype=np.float)
    for i, name in enumerate(SHAPE_NAMES):
        io.cprint('%10s:\t%0.3f' % (name, class_accuracies[i]))
示例#4
0
def run(train_loader, test_pairs, options):
    # Construct model
    cuda = options["device_id"] != -1
    if options["use_pair_feature"]:
        point_net = PointNet(options)
        pair_net = PairNetWithPairFeatures(options, point_net)
        model = TripletNetWithPairFeatures(pair_net)
    else:
        point_net = PointNet(options)
        pair_net = PairNet(options, point_net)
        model = TripletNet(pair_net)
    if cuda:
        model.cuda()
    print(model)

    optimizer = torch.optim.Adam(model.parameters(), lr=options["lr"], weight_decay=options["weight_decay"])
    loss_fn = TripletLoss(options["margin"])

    best_overall_metric = 0  # a single value
    best_metrics = None  # a dictionary
    best_epoch = 0
    save_model(model, options["save_dir"], 'best', 0)  # save the initial first model
    for epoch in range(options["epochs"]):
        epoch_loss, non_zero_triplet_ratio = train_triplet_epoch(train_loader, model, loss_fn, optimizer, cuda,
                                                                 use_pair_feature=options["use_pair_feature"])
        print("Epoch: {}, train-loss: {:06.4f}, non_zero_triplet_ratio: {:06.4f}, ".format(epoch, epoch_loss,
                                                                                          non_zero_triplet_ratio))
        if epoch % options["eval_epoch"] == 0 and epoch != 0:
            if options["use_pair_feature"]:
                prediction_score = pair_prediction_with_pair_feature(model.pair_net, test_pairs, pair_features, cuda, options, batch_size=10000)
            else:
                prediction_score = pair_prediction(model.pair_net, test_pairs, cuda, options, batch_size=10000)
            test_triplets = []
            for term_pair, score in zip(test_pairs, prediction_score):
                test_triplets.append((term_pair[0], term_pair[1], -1.0 * score))
            metrics = evaluation_main(test_triplets)
            if metrics["all"] >= best_overall_metric:
                best_overall_metric =metrics["all"]
                best_epoch = epoch
                best_metrics = metrics
                save_model(model, options["save_dir"], 'best', epoch)  # save the initial first model

    return best_overall_metric, best_epoch, best_metrics
示例#5
0
    def __init__(self, mode, dataset, device, split, path=None):
        if mode == "PointNet":
            self.model = PointNet().to(device)
            if path is None:
                path = "./metrics/pointnet_modelnet40/checkpoints/pointnet_max_pc_2048_emb_1024/models/model.t7"
            if split == 'train':
                self.real_stat_save_path = "./metrics/gt_stats/pointnet_max_pc_2048_emb_1024/%s-train.npz" % dataset
            elif split == 'test':
                self.real_stat_save_path = "./metrics/gt_stats/pointnet_max_pc_2048_emb_1024/%s-test.npz" % dataset
            else:
                raise ValueError('ERROR: unknown split %s!' % split)
            print('Using PointNet, gt_stat_fn: %s\n' %
                  self.real_stat_save_path)

        else:
            raise ValueError('ERROR: unknown FID mode %s!' % mode)

        self.model.load_state_dict(torch.load(path))
        self.model = self.model.eval()
        self.device = device
示例#6
0
文件: main.py 项目: hsack6/BMNN_exp
def main(opt):
    train_dataset = Dataset(opt.dataroot, True)
    train_dataloader = Dataloader(train_dataset, batch_size=opt.batchSize, \
                                      shuffle=False, num_workers=2)

    test_dataset = Dataset(opt.dataroot, False)
    test_dataloader = Dataloader(test_dataset, batch_size=opt.batchSize, \
                                      shuffle=False, num_workers=2)

    net = PointNet(d=opt.d, feature_transform=opt.feature_transform)
    net.double()
    print(net)

    criterion = nn.CosineSimilarity(dim=2)
    optimizer = optim.Adam(net.parameters(), lr=opt.lr)

    with open('train.csv', 'a') as f:
        writer = csv.writer(f, lineterminator='\n')
        writer.writerow(
            ["train_loss", "train_gain", "baseline_loss", "baseline_gain"])

    with open('test.csv', 'a') as f:
        writer = csv.writer(f, lineterminator='\n')
        writer.writerow(
            ["test_loss", "test_gain", "baseline_loss", "baseline_gain"])

    start = time.time()

    for epoch in range(0, opt.niter):
        train(epoch, train_dataloader, net, criterion, optimizer, opt)
        test(test_dataloader, net, criterion, optimizer, opt)

    elapsed_time = time.time() - start

    with open('time.csv', 'a') as f:
        writer = csv.writer(f, lineterminator='\n')
        writer.writerow(["学習時間", elapsed_time])
示例#7
0
def test(args, io):
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN_cls(args).to(device)
    else:
        raise Exception("Not implemented")

    model = nn.DataParallel(model)
    model.load_state_dict(torch.load(args.model_path))
    model = model.eval()
    test_acc = 0.0
    count = 0.0
    test_true = []
    test_pred = []
    for data, label in test_loader:
        data, label = data.to(device), label.to(device).squeeze()
        data = data.permute(0, 2, 1)
        batch_size = data.size()[0]
        logits = model(data)
        preds = logits.max(dim=1)[1]
        test_true.append(label.cpu().numpy())
        test_pred.append(preds.detach().cpu().numpy())
        # visualize - added by jaeha
        if args.visualize:
            xyz = data[0].cpu()
            ax = plt.axes(projection='3d')
            ax.scatter(xyz[0, :], xyz[1, :], xyz[2, :], s=1, color='blue')
            plt.title('True: ' + class_lists[label[0]] + ' ,  Pred: ' +
                      class_lists[preds[0]])
            plt.show()
    test_true = np.concatenate(test_true)
    test_pred = np.concatenate(test_pred)
    test_acc = metrics.accuracy_score(test_true, test_pred)
    avg_per_class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
    outstr = 'Test :: test acc: %.6f, test avg acc: %.6f' % (test_acc,
                                                             avg_per_class_acc)
    io.cprint(outstr)
示例#8
0
def test(args, io):
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN_cls(args).to(device)
    else:
        raise Exception("Not implemented")

    model = nn.DataParallel(model)
    model.load_state_dict(torch.load(args.model_path))
    model = model.eval()
    test_acc = 0.0
    count = 0.0
    test_true = []
    test_pred = []
    for data, label in test_loader:

        data, label = data.to(device), label.to(device).squeeze()
        data = data.permute(0, 2, 1)
        batch_size = data.size()[0]
        logits = model(data)
        preds = logits.max(dim=1)[1]
        test_true.append(label.cpu().numpy())
        test_pred.append(preds.detach().cpu().numpy())
    test_true = np.concatenate(test_true)
    test_pred = np.concatenate(test_pred)
    test_acc = metrics.accuracy_score(test_true, test_pred)
    avg_per_class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
    outstr = 'Test :: test acc: %.6f, test avg acc: %.6f' % (test_acc,
                                                             avg_per_class_acc)
    io.cprint(outstr)
示例#9
0
文件: main_cls.py 项目: jtpils/HDGCN
def mytest(args, io):
    # test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points),
    #                          batch_size=args.test_batch_size, shuffle=True, drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN_cls(args).to(device)
    else:
        raise Exception("Not implemented")

    model = nn.DataParallel(model)
    model.load_state_dict(torch.load(args.model_path))
    model = model.eval()
    test_acc = 0.0
    count = 0.0
    test_true = []
    test_pred = []
    pc_test = pc_from_h5('/home/mask/MSCNN/data-generation/resources/dataset/object_4e/real_test/1.h5')

    # for i in range(10):
    pc_test = torch.from_numpy(pc_test)
    pc_test = pc_test.type(torch.FloatTensor)
    pc_test = pc_test.cuda()
    pc_test = pc_test.permute(0, 2, 1)
    pc_test = pc_test.to(device)



    logits = model(pc_test)
    preds = logits.max(dim=1)[1]
    test_pred.append(preds.detach().cpu().numpy())
    print(test_pred)
示例#10
0
    if options["use_pair_feature"]:
        print("!!! Using pair features")
        f_pair_feature_key = options["pair_feature_prefix"] + "edge.keys.tsv"
        f_pair_feature_value = options["pair_feature_prefix"] + "edge.values.npy"
        pair_features = load_pair_features(f_pair_feature_key, f_pair_feature_value)

    # Construct testing set
    f_pred = options["pred_pairs_file_in"]
    print("!!! Loading term pairs for prediction from: {}".format(f_pred))
    pred_pairs = load_element_pairs(f_pred, with_label=False)
    print("Number of term pairs for prediction: {}".format(len(pred_pairs)))

    # Construct model skeleton
    cuda = options["device_id"] != -1
    if options["use_pair_feature"]:
        point_net = PointNet(options)
        pair_net = PairNetWithPairFeatures(options, point_net)
        model = TripletNetWithPairFeatures(pair_net)
    else:
        point_net = PointNet(options)
        pair_net = PairNet(options, point_net)
        model = TripletNet(pair_net)
    if cuda:
        model.cuda()

    # Load pre-trained model
    model_path = options["snapshot"]
    model.load_state_dict(torch.load(model_path))
    print(model)

    # Conduct pair prediction and dump results to file
示例#11
0
def train(args, io):
    train_loader = DataLoader(ModelNet40(partition='train'),
                              num_workers=8,
                              batch_size=args.batch_size,
                              shuffle=True,
                              drop_last=True)
    test_loader = DataLoader(ModelNet40(partition='test'),
                             num_workers=8,
                             batch_size=args.batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda:0")

    model = PointNet().to(device)
    print(str(model))

    print("Use Adam")
    opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-6)

    scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr)

    criterion = cal_loss

    best_test_acc = 0
    for epoch in range(args.epochs):
        scheduler.step()
        ####################
        # Train
        ####################
        train_loss = 0.0
        count = 0.0
        model.train()
        train_pred = []
        train_true = []
        for data, label in train_loader:
            data, label = data.to(device), label.to(device).squeeze()
            batch_size = data.size()[0]
            opt.zero_grad()
            logits = model(data.float())
            loss = criterion(logits, label)
            loss.backward()
            opt.step()
            preds = logits.max(dim=1)[1]
            count += batch_size
            train_loss += loss.item() * batch_size
            train_true.append(label.cpu().numpy())
            train_pred.append(preds.detach().cpu().numpy())
        train_true = np.concatenate(train_true)
        train_pred = np.concatenate(train_pred)
        outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (
            epoch, train_loss * 1.0 / count,
            metrics.accuracy_score(train_true, train_pred),
            metrics.balanced_accuracy_score(train_true, train_pred))
        io.cprint(outstr)

        ####################
        # Test
        ####################
        test_loss = 0.0
        count = 0.0
        model.eval()
        test_pred = []
        test_true = []
        for data, label in test_loader:
            data, label = data.to(device), label.to(device).squeeze()
            batch_size = data.size()[0]
            logits = model(data.float())
            loss = criterion(logits, label)
            preds = logits.max(dim=1)[1]
            count += batch_size
            test_loss += loss.item() * batch_size
            test_true.append(label.cpu().numpy())
            test_pred.append(preds.detach().cpu().numpy())
        test_true = np.concatenate(test_true)
        test_pred = np.concatenate(test_pred)
        test_acc = metrics.accuracy_score(test_true, test_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(
            test_true, test_pred)
        outstr = 'Test %d, loss: %.6f, test acc: %.6f, test avg acc: %.6f' % (
            epoch, test_loss * 1.0 / count, test_acc, avg_per_class_acc)
        io.cprint(outstr)
        if test_acc >= best_test_acc:
            best_test_acc = test_acc
            torch.save(model.state_dict(),
                       'checkpoints/%s/models/model.t7' % args.exp_name)
            print('Saving ckpt with acc: %f' % best_test_acc)
示例#12
0
def softXEnt(prediction, real_class):
    # TODO: return loss here


def get_eval_acc_results(model, data_loader, device):
    """
    ACC
    """
    seq_id = 0
    model.eval()

    distribution = np.zeros([5])
    confusion_matrix = np.zeros([5, 5])
    pred_ys = []
    gt_ys = []
    with torch.no_grad():
        accs = []
        for x, y in data_loader:
            x = x.to(device)
            y = y.to(device)

            # TODO: put x into network and get out
            out = 

            # TODO: get pred_y from out
            pred_y =
            gt = np.argmax(y.cpu().numpy(), axis=1)

            # TODO: calculate acc from pred_y and gt
            acc = 
            gt_ys = np.append(gt_ys, gt)
            pred_ys = np.append(pred_ys, pred_y)
            idx = gt

            accs.append(acc)

        return np.mean(accs)


if __name__ == "__main__":
    writer = SummaryWriter('./output/runs/tersorboard')
    torch.manual_seed(SEED)
    device = torch.device(f'cuda:{gpus[0]}' if torch.cuda.is_available() else 'cpu')
    print("Loading train dataset...")
    train_data = PointNetDataset("../../../dataset/modelnet40_normal_resampled", train=0)
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    print("Loading valid dataset...")
    val_data = PointNetDataset("../../../dataset/modelnet40_normal_resampled/", train=1)
    val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True)
    print("Set model and optimizer...")
    model = PointNet().to(device=device)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    scheduler = optim.lr_scheduler.StepLR(
          optimizer, step_size=decay_lr_every, gamma=decay_lr_factor)

    best_acc = 0.0
    model.train()
    print("Start trainning...")
    for epoch in range(epochs):
      acc_loss = 0.0
      num_samples = 0
      start_tic = time.time()
      for x, y in train_loader:
        x = x.to(device)
        y = y.to(device)

        # TODO: set grad to zero

        # TODO: put x into network and get out
        out = 

        loss = softXEnt(out, y)
        
        # TODO: loss backward

        # TODO: update network's param
        
        acc_loss += batch_size * loss.item()
        num_samples += y.shape[0]
        global_step += 1
        acc = np.sum(np.argmax(out.cpu().detach().numpy(), axis=1) == np.argmax(y.cpu().detach().numpy(), axis=1)) / len(y)
        # print('acc: ', acc)
        if (global_step + 1) % show_every == 0:
          # ...log the running loss
          writer.add_scalar('training loss', acc_loss / num_samples, global_step)
          writer.add_scalar('training acc', acc, global_step)
          # print( f"loss at epoch {epoch} step {global_step}:{loss.item():3f}, lr:{optimizer.state_dict()['param_groups'][0]['lr']: .6f}, time:{time.time() - start_tic: 4f}sec")
      scheduler.step()
      print(f"loss at epoch {epoch}:{acc_loss / num_samples:.3f}, lr:{optimizer.state_dict()['param_groups'][0]['lr']: .6f}, time:{time.time() - start_tic: 4f}sec")
      
      if (epoch + 1) % val_every == 0:
        
        acc = get_eval_acc_results(model, val_loader, device)
        print("eval at epoch[" + str(epoch) + f"] acc[{acc:3f}]")
        writer.add_scalar('validing acc', acc, global_step)

        if acc > best_acc:
          best_acc = acc
          save_ckp(save_dir, model, optimizer, epoch, best_acc, date)

          example = torch.randn(1, 3, 10000).to(device)
          traced_script_module = torch.jit.trace(model, example)
          traced_script_module.save("../output/traced_model.pt")
示例#13
0
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)

    num_points = 1024
    # Load datasets.
    train_dataset, train_dataloader, test_dataset, test_dataloader, \
         = create_datasets_and_dataloaders(num_points)

    # Create the network.
    n_dims = 3
    net = {}
    if args.frontend == 'DGCNN':
        net['frontend'] = DGCNN(n_dims, args.embed_dims)
    else:
        net['frontend'] = PointNet(n_dims, args.embed_dims)

    if args.attention:
        net['middle'] = Transformer(args.embed_dims)

    if args.backend == 'SVD':
        net['backend'] = SVD(args.embed_dims, device)
    else:
        net['backend'] = MLP(args.embed_dims, device)

    if torch.cuda.is_available():
        for key in net.keys():
            net[key].cuda()

    # Load a model if given.
    if args.model != '':
示例#14
0
def train(args, io):
    train_loader = DataLoader(ModelNet40(partition='train', num_points=args.num_points), num_workers=8,
                              batch_size=args.batch_size, shuffle=True, drop_last=True)
    test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points), num_workers=8,
                             batch_size=args.test_batch_size, shuffle=True, drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN(args).to(device)
    elif args.model == 'semigcn':
        model = SemiGCN(args).to(device)
    else:
        raise Exception("Not implemented")
    print(str(model))

    model = nn.DataParallel(model)
    print("Let's use", torch.cuda.device_count(), "GPUs!")

    if args.use_sgd:
        print("Use SGD")
        opt = optim.SGD(model.parameters(), lr=args.lr*100, momentum=args.momentum, weight_decay=1e-4)
    else:
        print("Use Adam")
        opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
        
    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            opt.load_state_dict(checkpoint['opt'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
            
    #scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr, last_epoch=args.start_epoch-1)
    scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.8)#0.7
    #scheduler = torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.9825, last_epoch=args.start_epoch-1)
    
    criterion = cal_loss

    best_test_acc = 0
    for epoch in range(args.start_epoch, args.epochs):
        #scheduler.step()
        ####################
        # Train
        ####################
        train_loss = 0.0
        count = 0.0
        model.train()
        train_pred = []
        train_true = []
        for data, label in train_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            opt.zero_grad()
            logits = model(data)
            loss = criterion(logits, label)
            loss.backward()
            opt.step()
            preds = logits.max(dim=1)[1]
            count += batch_size
            train_loss += loss.item() * batch_size
            train_true.append(label.cpu().numpy())
            train_pred.append(preds.detach().cpu().numpy())
        scheduler.step()
        train_true = np.concatenate(train_true)
        train_pred = np.concatenate(train_pred)
        outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (epoch,
                                                                                 train_loss*1.0/count,
                                                                                 metrics.accuracy_score(
                                                                                     train_true, train_pred),
                                                                                 metrics.balanced_accuracy_score(
                                                                                     train_true, train_pred))
        io.cprint(outstr)
        if epoch%10 == 0:
            # save running checkpoint per 10 epoch
            torch.save({'epoch': epoch + 1,
                        'arch': args.model,
                        'state_dict': model.state_dict(),
                        'opt' : opt.state_dict()},
                        'checkpoints/%s/models/checkpoint_latest.pth.tar' % args.exp_name)
        ####################
        # Test
        ####################
        test_loss = 0.0
        count = 0.0
        model.eval()
        test_pred = []
        test_true = []
        for data, label in test_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            logits = model(data)
            loss = criterion(logits, label)
            preds = logits.max(dim=1)[1]
            count += batch_size
            test_loss += loss.item() * batch_size
            test_true.append(label.cpu().numpy())
            test_pred.append(preds.detach().cpu().numpy())
        test_true = np.concatenate(test_true)
        test_pred = np.concatenate(test_pred)
        test_acc = metrics.accuracy_score(test_true, test_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
        outstr = 'Test %d, loss: %.6f, test acc: %.6f, test avg acc: %.6f' % (epoch,
                                                                              test_loss*1.0/count,
                                                                              test_acc,
                                                                              avg_per_class_acc)
        io.cprint(outstr)
        if test_acc >= best_test_acc:
            best_test_acc = test_acc
            torch.save({'epoch': epoch + 1,
                        'arch': args.model,
                        'state_dict': model.state_dict(),
                        'opt' : opt.state_dict()},
                        'checkpoints/%s/models/checkpoint_best.pth.tar' % args.exp_name)
示例#15
0
    #数据可视化
    path = "../../dataset/modelnet40_normal_resampled"
    writer = SummaryWriter('./output/runs/tersorboard')
    torch.manual_seed(SEED)
    device = torch.device(f'cuda:{gpus[0]}' if torch.cuda.is_available() else 'cpu')
    print("Loading train dataset...")
    train_data = PointNetDataset(path, train=0)
    # shuffle = True, 打乱后在输出
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    print("Loading valid dataset...")
    #val_data = PointNetDataset("../../dataset/modelnet40_normal_resampled/", train=1)
    val_data = PointNetDataset(path, train=1)
    
    val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True)
    print("Set model and optimizer...")
    model = PointNet().to(device=device)
    # 初始化优化器
    optimizer = optim.Adam(model.parameters(), lr=lr)
    scheduler = optim.lr_scheduler.StepLR(
          optimizer, step_size=decay_lr_every, gamma=decay_lr_factor)

    best_acc = 0.0
    model.train()
    # %%
    print("Start training...")
    for epoch in range(epochs):
      acc_loss = 0.0
      num_samples = 0
      start_tic = time.time()
      for x, y in train_loader:
        x = x.to(device)
示例#16
0
文件: main_cls.py 项目: layumi/dgcnn
def train(args, io):
    train_loader = DataLoader(ModelNet40(partition='train',
                                         num_points=args.num_points),
                              num_workers=8,
                              batch_size=args.batch_size,
                              shuffle=True,
                              drop_last=True)
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             num_workers=8,
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN(args).to(device)
    elif args.model == 'ssg':
        model = PointNet2SSG(output_classes=40, dropout_prob=args.dropout)
        model.to(device)
    elif args.model == 'msg':
        model = PointNet2MSG(output_classes=40, dropout_prob=args.dropout)
        model.to(device)
    elif args.model == 'ognet':
        # [64,128,256,512]
        model = Model_dense(20,
                            args.feature_dims, [512],
                            output_classes=40,
                            init_points=768,
                            input_dims=3,
                            dropout_prob=args.dropout,
                            id_skip=args.id_skip,
                            drop_connect_rate=args.drop_connect_rate,
                            cluster='xyzrgb',
                            pre_act=args.pre_act,
                            norm=args.norm_layer)
        if args.efficient:
            model = ModelE_dense(20,
                                 args.feature_dims, [512],
                                 output_classes=40,
                                 init_points=768,
                                 input_dims=3,
                                 dropout_prob=args.dropout,
                                 id_skip=args.id_skip,
                                 drop_connect_rate=args.drop_connect_rate,
                                 cluster='xyzrgb',
                                 pre_act=args.pre_act,
                                 norm=args.norm_layer,
                                 gem=args.gem,
                                 ASPP=args.ASPP)
        model.to(device)
    elif args.model == 'ognet-small':
        # [48,96,192,384]
        model = Model_dense(20,
                            args.feature_dims, [512],
                            output_classes=40,
                            init_points=768,
                            input_dims=3,
                            dropout_prob=args.dropout,
                            id_skip=args.id_skip,
                            drop_connect_rate=args.drop_connect_rate,
                            cluster='xyzrgb',
                            pre_act=args.pre_act,
                            norm=args.norm_layer)
        model.to(device)
    else:
        raise Exception("Not implemented")
    print(str(model))

    model = nn.DataParallel(model)
    print("Let's use", torch.cuda.device_count(), "GPUs!")

    if args.use_sgd:
        print("Use SGD")
        opt = optim.SGD(model.parameters(),
                        lr=args.lr * 100,
                        momentum=args.momentum,
                        weight_decay=1e-4)
        scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr)
    else:
        print("Use Adam")
        opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
        scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=0.01 * args.lr)

    criterion = cal_loss

    best_test_acc = 0
    best_avg_per_class_acc = 0

    warm_up = 0.1  # We start from the 0.1*lrRate
    warm_iteration = round(
        len(ModelNet40(partition='train', num_points=args.num_points)) /
        args.batch_size) * args.warm_epoch  # first 5 epoch
    for epoch in range(args.epochs):
        scheduler.step()
        ####################
        # Train
        ####################
        train_loss = 0.0
        count = 0.0
        model.train()
        train_pred = []
        train_true = []
        for data, label in train_loader:
            data, label = data.to(device), label.to(device).squeeze()
            batch_size = data.size()[0]
            opt.zero_grad()
            if args.model == 'ognet' or args.model == 'ognet-small' or args.model == 'ssg' or args.model == 'msg':
                logits = model(data, data)
            else:
                data = data.permute(0, 2, 1)
                logits = model(data)
            loss = criterion(logits, label)
            if epoch < args.warm_epoch:
                warm_up = min(1.0, warm_up + 0.9 / warm_iteration)
                loss *= warm_up
            loss.backward()
            opt.step()
            preds = logits.max(dim=1)[1]
            count += batch_size
            train_loss += loss.item() * batch_size
            train_true.append(label.cpu().numpy())
            train_pred.append(preds.detach().cpu().numpy())
        train_true = np.concatenate(train_true)
        train_pred = np.concatenate(train_pred)
        outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (
            epoch, train_loss * 1.0 / count,
            metrics.accuracy_score(train_true, train_pred),
            metrics.balanced_accuracy_score(train_true, train_pred))
        io.cprint(outstr)

        ####################
        # Test
        ####################
        test_loss = 0.0
        count = 0.0
        model.eval()
        test_pred = []
        test_true = []
        for data, label in test_loader:
            data, label = data.to(device), label.to(device).squeeze()
            batch_size = data.size()[0]
            if args.model == 'ognet' or args.model == 'ognet-small' or args.model == 'ssg' or args.model == 'msg':
                logits = model(data, data)
            else:
                data = data.permute(0, 2, 1)
                logits = model(data)
            loss = criterion(logits, label)
            preds = logits.max(dim=1)[1]
            count += batch_size
            test_loss += loss.item() * batch_size
            test_true.append(label.cpu().numpy())
            test_pred.append(preds.detach().cpu().numpy())
        test_true = np.concatenate(test_true)
        test_pred = np.concatenate(test_pred)
        test_acc = metrics.accuracy_score(test_true, test_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(
            test_true, test_pred)
        outstr = 'Test %d, loss: %.6f, test acc: %.6f, test avg acc: %.6f' % (
            epoch, test_loss * 1.0 / count, test_acc, avg_per_class_acc)
        io.cprint(outstr)
        if test_acc + avg_per_class_acc >= best_test_acc + best_avg_per_class_acc:
            best_test_acc = test_acc
            best_avg_per_class_acc = avg_per_class_acc
            print('This is the current best.')
            torch.save(model.state_dict(),
                       'checkpoints/%s/models/model.t7' % args.exp_name)
from model import PointNet, DGCNN
from data import ModelNet40
from torch.utils.data import DataLoader

train_loader = DataLoader(ModelNet40(partition='train', num_points=1024),
                          num_workers=8,
                          batch_size=32,
                          shuffle=True,
                          drop_last=True)
test_loader = DataLoader(ModelNet40(partition='test', num_points=1024),
                         num_workers=8,
                         batch_size=32,
                         shuffle=True,
                         drop_last=False)

model = PointNet().cuda()
criterion = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
io = IOStream('checkpoints/run.log')
for epoch in range(100):
    #################
    #Train
    #################
    train_loss = 0.0
    count = 0.0
    model.train()
    train_pred = []
    train_true = []
    for data, label in tqdm(train_loader):
        data = data.permute(0, 2, 1)
        data, label = data.cuda(), label.squeeze().cuda()
示例#18
0
gpus = [0]
batch_size = 1
ckp_path = '../output/latest.pth'

def load_ckp(ckp_path, model):
  state = torch.load(ckp_path)
  model.load_state_dict(state['state_dict'])
  print("model load from %s" % ckp_path)

if __name__ == "__main__":
  torch.manual_seed(SEED)
  device = torch.device(f'cuda:{gpus[0]}' if torch.cuda.is_available() else 'cpu')
  print("Loading test dataset...")
  test_data = PointNetDataset("./dataset/modelnet40_normal_resampled", train=1)
  test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True)
  model = PointNet().to(device=device)
  if ckp_path:
    load_ckp(ckp_path, model)
    model = model.to(device)
  
  model.eval()

  with torch.no_grad():
    accs = []
    gt_ys = []
    pred_ys = []
    for x, y in test_loader:
      x = x.to(device)
      y = y.to(device)

      # TODO: put x into network and get out
示例#19
0
def main():
    args = options()

    torch.backends.cudnn.deterministic = True
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)

    boardio = SummaryWriter(log_dir='checkpoints/' + args.exp_name)
    _init_(args)

    textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
    textio.cprint(str(args))

    train_loader = DataLoader(ModelNet40(num_points=args.num_points,
                                         partition='train',
                                         gaussian_noise=args.gaussian_noise,
                                         unseen=args.unseen,
                                         factor=args.factor,
                                         method='pcrnet'),
                              batch_size=args.batch_size,
                              shuffle=True,
                              drop_last=True,
                              num_workers=6)
    test_loader = DataLoader(ModelNet40(num_points=args.num_points,
                                        partition='test',
                                        gaussian_noise=args.gaussian_noise,
                                        unseen=args.unseen,
                                        factor=args.factor,
                                        method='pcrnet'),
                             batch_size=args.batch_size,
                             shuffle=False,
                             drop_last=False,
                             num_workers=6)

    if not torch.cuda.is_available():
        args.device = 'cpu'
    args.device = torch.device(args.device)

    # Create PointNet Model.
    ptnet = PointNet(emb_dims=args.emb_dims)
    model = iPCRNet(feature_model=ptnet)
    model = model.to(args.device)

    checkpoint = None
    if args.resume:
        assert os.path.isfile(args.resume)
        checkpoint = torch.load(args.resume)
        args.start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])

    if args.pretrained:
        assert os.path.isfile(args.pretrained)
        model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
    model.to(args.device)

    if args.eval:
        test(args, model, test_loader, textio)
    else:
        train(args, model, train_loader, test_loader, boardio, textio,
              checkpoint)
示例#20
0
def train(modelin=args.model, modelout=args.out,device=args.device,opt=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = PointNet(n=1)
    sfm_net = PointNet(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        pretrained1 = torch.load(calib_path)
        pretrained2 = torch.load(sfm_path)
        calib_dict = calib_net.state_dict()
        sfm_dict = sfm_net.state_dict()

        pretrained1 = {k: v for k,v in pretrained1.items() if k in calib_dict}
        pretrained2 = {k: v for k,v in pretrained2.items() if k in sfm_dict}
        calib_dict.update(pretrained1)
        sfm_dict.update(pretrained2)

        calib_net.load_state_dict(pretrained1)
        sfm_net.load_state_dict(pretrained2)

    calib_net.to(device=device)
    sfm_net.to(device=device)
    opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-3)
    opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-3)

    # dataloader
    data = dataloader.Data()
    loader = data.batchloader
    batch_size = data.batchsize

    # mean shape and eigenvectors for 3dmm
    mu_lm = torch.from_numpy(data.mu_lm).float()#.to(device=device)
    mu_lm[:,2] = mu_lm[:,2] * -1
    mu_lm = torch.stack(batch_size * [mu_lm.to(device=device)])
    shape = mu_lm
    lm_eigenvec = torch.from_numpy(data.lm_eigenvec).float().to(device=device)
    lm_eigenvec = torch.stack(batch_size * [lm_eigenvec])

    M = data.M
    N = data.N

    # main training loop
    for epoch in itertools.count():
        for j,batch in enumerate(loader):

            # get the input and gt values
            x_cam_gt = batch['x_cam_gt'].to(device=device)
            shape_gt = batch['x_w_gt'].to(device=device)
            fgt = batch['f_gt'].to(device=device)
            x_img = batch['x_img'].to(device=device)
            #beta_gt = batch['beta_gt'].to(device=device)
            #x_img_norm = batch['x_img_norm']
            x_img_gt = batch['x_img_gt'].to(device=device).permute(0,2,1,3)
            batch_size = fgt.shape[0]

            one = torch.ones(batch_size,M*N,1).to(device=device)
            x_img_one = torch.cat([x_img,one],dim=2)
            x_cam_pt = x_cam_gt.permute(0,1,3,2).reshape(batch_size,6800,3)
            x = x_img.permute(0,2,1)
            #x = x_img.permute(0,2,1).reshape(batch_size,2,M,N)

            ptsI = x_img_one.reshape(batch_size,M,N,3).permute(0,1,3,2)[:,:,:2,:]

            # if just optimizing
            if not opt:
                # calibration
                f = calib_net(x) + 300
                K = torch.zeros((batch_size,3,3)).float().to(device=device)
                K[:,0,0] = f.squeeze()
                K[:,1,1] = f.squeeze()
                K[:,2,2] = 1

                # sfm
                betas = sfm_net(x)
                betas = betas.unsqueeze(-1)
                shape = mu_lm + torch.bmm(lm_eigenvec,betas).squeeze().view(batch_size,N,3)

                opt1.zero_grad()
                opt2.zero_grad()
                f_error = torch.mean(torch.abs(f - fgt))
                #error2d = torch.mean(torch.abs(pred - x_img_gt))
                error3d = torch.mean(torch.abs(shape - shape_gt))
                error = f_error + error3d
                error.backward()
                opt1.step()
                opt2.step()

                print(f"f_error: {f_error.item():.3f} | error3d: {error3d.item():.3f} | f/fgt: {f[0].item():.1f}/{fgt[0].item():.1f} | f/fgt: {f[1].item():.1f}/{fgt[1].item():.1f} | f/fgt: {f[2].item():.1f}/{fgt[2].item():.1f} | f/fgt: {f[3].item():.1f}/{fgt[3].item():.1f} ")
                continue

            # get shape error from image projection
            print(f"f/fgt: {f[0].item():.3f}/{fgt[0].item():.3f} | rmse: {rmse:.3f} | f_rel: {f_error.item():.4f}  | loss1: {loss1.item():.3f} | loss2: {loss2.item():.3f}")

        # save model and increment weight decay
        print("saving!")
        torch.save(sfm_net.state_dict(), os.path.join('model','sfm_'+modelout))
        torch.save(calib_net.state_dict(), os.path.join('model','calib_'+modelout))
        test(modelin=args.out,outfile=args.out,optimize=False)
示例#21
0
def startcustomtraining(args, io):
    ft_loader = DataLoader(FT10(num_points=args.num_points),
                           num_workers=8,
                           batch_size=args.test_batch_size,
                           shuffle=True,
                           drop_last=True)
    ft_test_loader = DataLoader(FT11(num_points=args.num_points),
                                num_workers=8,
                                batch_size=args.test_batch_size,
                                shuffle=True,
                                drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN(args).to(device)
    else:
        raise Exception("Not implemented")
    print(str(model))

    model = nn.DataParallel(model)
    print("Let's use", torch.cuda.device_count(), "GPUs!")

    if args.use_sgd:
        print("Use SGD")
        opt = optim.SGD(model.parameters(),
                        lr=args.lr * 100,
                        momentum=args.momentum,
                        weight_decay=1e-4)
    else:
        print("Use Adam")
        opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)

    scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr)

    criterion = cal_loss
    best_ft_test_acc = 0.0

    i = 0
    train_accs = []
    test_accs = []
    epochs = []

    for epoch in range(args.epochs):
        i += 1
        scheduler.step()
        ft_loss = 0.0
        count = 0
        model.train()
        ft_pred = []
        ft_true = []
        for data, label in ft_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            opt.zero_grad()
            logits = model(data)
            loss = criterion(logits, label)
            loss.backward()
            opt.step()
            preds = logits.max(dim=1)[1]
            count += batch_size
            ft_loss += loss.item() * batch_size
            ft_true.append(label.cpu().numpy())
            ft_pred.append(preds.detach().cpu().numpy())
            #print(data.shape, label.shape, logits.shape, preds.shape)
            #print('LABELS:', label)
            #print('PREDS:', preds)
            #print('LOGITS:', logits)
        ft_true = np.concatenate(ft_true)
        ft_pred = np.concatenate(ft_pred)
        ft_acc = metrics.accuracy_score(ft_true, ft_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(ft_true, ft_pred)
        outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (
            epoch, ft_loss * 1.0 / count, ft_acc, avg_per_class_acc)
        io.cprint(outstr)
        train_accs.append(ft_acc)

        ft_test_loss = 0.0
        count = 0
        model.eval()
        ft_test_pred = []
        ft_test_true = []
        for data, label in ft_test_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            logits = model(data)
            loss = criterion(logits, label)
            preds = logits.max(dim=1)[1]
            count += batch_size
            ft_test_loss += loss.item() * batch_size
            ft_test_true.append(label.cpu().numpy())
            ft_test_pred.append(preds.detach().cpu().numpy())
            #print(data.shape, label.shape, logits.shape, preds.shape)
            #print('LABELS:', label)
            #print('PREDS:', preds)
            #print('LOGITS:', logits)
        ft_test_true = np.concatenate(ft_test_true)
        ft_test_pred = np.concatenate(ft_test_pred)
        ft_test_acc = metrics.accuracy_score(ft_test_true, ft_test_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(
            ft_test_true, ft_test_pred)
        outstr = 'Test %d, loss: %.6f, test acc: %.6f, test avg acc: %.6f' % (
            epoch, ft_test_loss * 1.0 / count, ft_test_acc, avg_per_class_acc)
        io.cprint(outstr)
        if ft_test_acc > best_ft_test_acc:
            print('save now')
            best_ft_test_acc = ft_test_acc
            torch.save(model.state_dict(), 'pretrained/custommodel.t7')
        #torch.save(model.state_dict(), 'pretrained/custommodel.t7')

        epochs.append(i)
        test_accs.append(ft_test_acc)

        fig, ax = plt.subplots()
        ax.plot(epochs, train_accs, color='blue', label='train acc')
        ax.plot(epochs, test_accs, color='red', label='test acc')
        ax.set(xlabel='epoch',
               ylabel='accuracy',
               title='accuracy values per epoch')
        ax.grid()
        ax.legend()
        fig.savefig("accuracy.png")
        plt.show()
示例#22
0
def main(opt):
    train_dataset = BADataset(opt.dataroot, opt.L, True, False, False)
    train_dataloader = BADataloader(train_dataset, batch_size=opt.batchSize, \
                                      shuffle=True, num_workers=opt.workers, drop_last=True)

    valid_dataset = BADataset(opt.dataroot, opt.L, False, True, False)
    valid_dataloader = BADataloader(valid_dataset, batch_size=opt.batchSize, \
                                     shuffle=True, num_workers=opt.workers, drop_last=True)

    test_dataset = BADataset(opt.dataroot, opt.L, False, False, True)
    test_dataloader = BADataloader(test_dataset, batch_size=opt.batchSize, \
                                     shuffle=True, num_workers=opt.workers, drop_last=True)

    all_dataset = BADataset(opt.dataroot, opt.L, False, False, False)
    all_dataloader = BADataloader(all_dataset, batch_size=opt.batchSize, \
                                     shuffle=False, num_workers=opt.workers, drop_last=False)

    net = PointNet(d0=opt.d0,
                   d1=opt.d1,
                   d2=opt.d2,
                   d3=opt.d3,
                   d4=opt.d4,
                   d5=opt.d5,
                   d6=opt.d6)
    net.double()
    print(net)

    criterion = nn.CosineSimilarity(dim=1)

    if opt.cuda:
        net.cuda()
        criterion.cuda()

    optimizer = optim.Adam(net.parameters(), lr=opt.lr)
    early_stopping = EarlyStopping(patience=opt.patience, verbose=True)

    os.makedirs(OutputDir, exist_ok=True)
    train_loss_ls = []
    valid_loss_ls = []
    test_loss_ls = []

    for epoch in range(0, opt.niter):
        train_loss = train(epoch, train_dataloader, net, criterion, optimizer,
                           opt)
        valid_loss = valid(valid_dataloader, net, criterion, opt)
        test_loss = test(test_dataloader, net, criterion, opt)

        train_loss_ls.append(train_loss)
        valid_loss_ls.append(valid_loss)
        test_loss_ls.append(test_loss)

        early_stopping(valid_loss, net, OutputDir)
        if early_stopping.early_stop:
            print("Early stopping")
            break

    df = pd.DataFrame({
        'epoch': [i for i in range(1,
                                   len(train_loss_ls) + 1)],
        'train_loss': train_loss_ls,
        'valid_loss': valid_loss_ls,
        'test_loss': test_loss_ls
    })
    df.to_csv(OutputDir + '/loss.csv', index=False)

    net.load_state_dict(torch.load(OutputDir + '/checkpoint.pt'))
    inference(all_dataloader, net, opt, OutputDir)
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--num_points',
                        type=int,
                        default=4096,
                        help='num of points to use')
    parser.add_argument('--dropout',
                        type=float,
                        default=0.5,
                        help='dropout rate')
    parser.add_argument('--emb_dims',
                        type=int,
                        default=1024,
                        metavar='N',
                        help='Dimension of embeddings')
    parser.add_argument('--k',
                        type=int,
                        default=40,
                        metavar='N',
                        help='Num of nearest neighbors to use')
    args = parser.parse_args()
    # load models
    if args.model == 'pointnet':
        model = PointNet(args)
    elif args.model == 'dgcnn':
        model = DGCNN(args)

    print('#parameters %d' % sum([x.nelement() for x in model.parameters()]))
示例#24
0
class FID(object):
    def __init__(self, mode, dataset, device, split, path=None):
        if mode == "PointNet":
            self.model = PointNet().to(device)
            if path is None:
                path = "./metrics/pointnet_modelnet40/checkpoints/pointnet_max_pc_2048_emb_1024/models/model.t7"
            if split == 'train':
                self.real_stat_save_path = "./metrics/gt_stats/pointnet_max_pc_2048_emb_1024/%s-train.npz" % dataset
            elif split == 'test':
                self.real_stat_save_path = "./metrics/gt_stats/pointnet_max_pc_2048_emb_1024/%s-test.npz" % dataset
            else:
                raise ValueError('ERROR: unknown split %s!' % split)
            print('Using PointNet, gt_stat_fn: %s\n' %
                  self.real_stat_save_path)

        else:
            raise ValueError('ERROR: unknown FID mode %s!' % mode)

        self.model.load_state_dict(torch.load(path))
        self.model = self.model.eval()
        self.device = device

    def get_fid(self, fake_pts, batch_size=32):
        f = np.load(self.real_stat_save_path)
        real_mean, real_cov = f['mean'], f['cov']

        fake_feature_list = []
        with torch.no_grad():
            b, _, _ = fake_pts.shape
            for i in range(b // batch_size + 1):
                fake_pts_batch = fake_pts[i * batch_size:min((i + 1) *
                                                             batch_size, b)]
                if fake_pts_batch.shape[0] > 0:
                    fake_feature_batch = self.model(
                        torch.Tensor(fake_pts_batch).to(
                            self.device))[1].cpu().detach().numpy()
                    fake_feature_list.append(fake_feature_batch)
        fake_feature = np.concatenate(fake_feature_list, 0)
        fake_mean = np.mean(fake_feature, axis=0)
        fake_cov = np.cov(fake_feature, rowvar=False)

        fid = self.calculate_frechet_distance(real_mean, real_cov, fake_mean,
                                              fake_cov)
        return fid

    @staticmethod
    def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
        """Numpy implementation of the Frechet Distance.
        The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
        and X_2 ~ N(mu_2, C_2) is
                d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
        Stable version by Dougal J. Sutherland.
        Params:
        -- mu1   : Numpy array containing the activations of a layer of the
                   inception net (like returned by the function 'get_predictions')
                   for generated samples.
        -- mu2   : The sample mean over activations, precalculated on an
                   representative data set.
        -- sigma1: The covariance matrix over activations for generated samples.
        -- sigma2: The covariance matrix over activations, precalculated on an
                   representative data set.
        Returns:
        --   : The Frechet Distance.
        """

        mu1 = np.atleast_1d(mu1)
        mu2 = np.atleast_1d(mu2)

        sigma1 = np.atleast_2d(sigma1)
        sigma2 = np.atleast_2d(sigma2)

        assert mu1.shape == mu2.shape, \
            'Training and test mean vectors have different lengths'
        assert sigma1.shape == sigma2.shape, \
            'Training and test covariances have different dimensions'

        diff = mu1 - mu2

        # Product might be almost singular
        covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
        if not np.isfinite(covmean).all():
            msg = ('fid calculation produces singular product; '
                   'adding %s to diagonal of cov estimates') % eps
            print(msg)
            offset = np.eye(sigma1.shape[0]) * eps
            covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

        # Numerical error might give slight imaginary component
        if np.iscomplexobj(covmean):
            if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
                m = np.max(np.abs(covmean.imag))
                raise ValueError('Imaginary component {}'.format(m))
            covmean = covmean.real

        tr_covmean = np.trace(covmean)

        return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) -
                2 * tr_covmean)
示例#25
0
def testBIWIID(modelin=args.model,outfile=args.out,optimize=args.opt):
    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = PointNet(n=1)
    sfm_net = PointNet(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # define loader
    loader = dataloader.BIWIIDLoader()
    f_pred = []
    shape_pred = []
    error_2d = []
    error_relf = []
    error_rel3d = []
    for idx in range(len(loader)):
        batch = loader[idx]
        x_cam_gt = batch['x_cam_gt']
        fgt = batch['f_gt']
        x_img = batch['x_img']
        x_img_gt = batch['x_img_gt']
        M = x_img_gt.shape[0]
        N = 68

        ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
        x = ptsI.unsqueeze(0).permute(0,2,1,3)

        # run the model
        f = calib_net(x) + 300
        betas = sfm_net(x)
        betas = betas.squeeze(0).unsqueeze(-1)
        shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)

        # additional optimization on initial solution
        if optimize:
            calib_net.load_state_dict(torch.load(calib_path))
            sfm_net.load_state_dict(torch.load(sfm_path))
            calib_net.train()
            sfm_net.train()

            opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
            opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-2)
            curloss = 100

            for outerloop in itertools.count():

                # camera calibration
                shape = shape.detach()
                for iter in itertools.count():
                    opt1.zero_grad()
                    f = calib_net.forward2(x) + 300
                    K = torch.zeros(3,3).float()
                    K[0,0] = f
                    K[1,1] = f
                    K[2,2] = 1

                    f_error = torch.mean(torch.abs(f - fgt))
                    #rmse = torch.norm(shape_gt - shape,dim=1).mean()

                    # differentiable PnP pose estimation
                    km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
                    Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                    error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l1')
                    error_time = util.getTimeConsistency(shape,R,T)
                    #error_shape = util.get3DConsistency(ptsI,shape,kinv,R,T)
                    order = torch.pow(10,-1*torch.floor(torch.log10(error_time)).detach())

                    #loss = error2d.mean() + order*error_time
                    loss = error2d.mean()
                    if iter == 5: break
                    #if iter > 10 and prev_loss < loss:
                    #    break
                    #else:
                    #    prev_loss = loss
                    loss.backward()
                    opt1.step()
                    print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} ")

                # sfm
                f = f.detach()
                for iter in itertools.count():
                    opt2.zero_grad()

                    # shape prediction
                    betas = sfm_net.forward2(x)
                    shape = torch.sum(betas * lm_eigenvec,1)
                    shape = shape.reshape(68,3) + mu_lm
                    K = torch.zeros((3,3)).float()
                    K[0,0] = f
                    K[1,1] = f
                    K[2,2] = 1

                    #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                    #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                    # differentiable PnP pose estimation
                    km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                    Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                    error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l1')
                    #loss = rmse
                    loss = error2d.mean()
                    if iter == 5: break
                    if iter > 10 and prev_loss < loss:
                        break
                    else:
                        prev_loss = loss
                    loss.backward()
                    opt2.step()
                    print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} ")

                # closing condition for outerloop on dual objective
                if torch.abs(curloss - loss) < 0.01: break
                curloss = loss
        else:
            K = torch.zeros(3,3).float()
            K[0,0] = f
            K[1,1] = f
            K[2,2] = 1
            km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

        # get errors
        reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K)
        rel_errors = util.getRelReprojError3(x_cam_gt,shape,R,T)

        reproj_error = reproj_errors2.mean()
        rel_error = rel_errors.mean()
        f_error = torch.abs(fgt - f) / fgt

        # save final prediction
        f_pred.append(f.detach().cpu().item())
        shape_pred.append(shape.detach().cpu().numpy())

        error_2d.append(reproj_error.cpu().data.item())
        error_rel3d.append(rel_error.cpu().data.item())
        error_relf.append(f_error.cpu().data.item())

        print(f" f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")
        #end for

    # prepare output file
    out_shape = np.stack(shape_pred)
    out_f = np.stack(f_pred)

    matdata = {}
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    matdata['error_2d'] = np.array(error_2d)
    matdata['error_rel3d'] = np.array(error_rel3d)
    matdata['error_relf'] = np.array(error_relf)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(error_2d)}")
    print(f"MEAN seterror_rel3d: {np.mean(error_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(error_relf)}")
示例#26
0
def test(modelin=args.model,outfile=args.out,optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = PointNet(n=1)
    sfm_net = PointNet(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]
    for f_test in f_vals:
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j,data in enumerate(loader):
            if j == 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']

            all_depth.append(np.mean(T_gt[:,2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x = x_img.unsqueeze(0).permute(0,2,1)

            # run the model
            f = calib_net(x) + 300
            betas = sfm_net(x)
            betas = betas.squeeze(0).unsqueeze(-1)
            shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)

            # additional optimization on initial solution
            if optimize:
                calib_net.load_state_dict(torch.load(calib_path))
                sfm_net.load_state_dict(torch.load(sfm_path))
                calib_net.train()
                sfm_net.train()
                opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
                opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-2)
                curloss = 100
                for outerloop in itertools.count():

                    # camera calibration
                    shape = shape.detach()
                    for iter in itertools.count():
                        opt1.zero_grad()
                        print(x.shape)
                        quit()
                        f = calib_net(x) + 300
                        K = torch.zeros(3,3).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        f_error = torch.mean(torch.abs(f - fgt))
                        rmse = torch.norm(shape_gt - shape,dim=1).mean()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l1')
                        #error2d = util.getReprojError2_(ptsI,Xc,K,show=True,loss='l1')
                        error_time = util.getTimeConsistency(shape,R,T)

                        loss = error2d.mean() + 0.01*error_time
                        if iter == 5: break
                        loss.backward()
                        opt1.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # sfm
                    f = f.detach()
                    for iter in itertools.count():
                        opt2.zero_grad()

                        # shape prediction
                        betas = sfm_net(x)
                        shape = torch.sum(betas * lm_eigenvec,1)
                        shape = shape.reshape(68,3) + mu_lm
                        K = torch.zeros((3,3)).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                        rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l1')
                        #loss = rmse
                        loss = error2d.mean()
                        if iter == 5: break
                        if iter > 10 and prev_loss < loss:
                            break
                        else:
                            prev_loss = loss
                        loss.backward()
                        opt2.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # closing condition for outerloop on dual objective
                    if torch.abs(curloss - loss) < 0.01: break
                    curloss = loss
            else:
                K = torch.zeros(3,3).float()
                K[0,0] = f
                K[1,1] = f
                K[2,2] = 1
                km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            all_fpred.append(f.detach().numpy()[0])

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K,show=False)
            reproj_errors3 = torch.norm(shape_gt - shape,dim=1).mean()
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.stack(f_pred))
        out_shape.append(np.stack(shape_pred,axis=0))
        print(f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {reproj_error.item():.4f} |  rmse: {avg_3d:.4f}  |")

    out_shape = np.stack(out_shape)
    out_f = np.stack(out_f)
    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#27
0
文件: main.py 项目: sngver/dgcnn
def train(args, io):
    train_loader = DataLoader(ModelNet40(partition='train',
                                         num_points=args.num_points),
                              num_workers=8,
                              batch_size=args.batch_size,
                              shuffle=True,
                              drop_last=True)
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             num_workers=8,
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN(args).to(device)
    else:
        raise Exception("Not implemented")
    print(str(model))

    model = nn.DataParallel(model)
    print("Let's use", torch.cuda.device_count(), "GPUs!")

    if args.use_sgd:
        print("Use SGD")
        opt = optim.SGD(model.parameters(),
                        lr=args.lr * 100,
                        momentum=args.momentum,
                        weight_decay=1e-4)
    else:
        print("Use Adam")
        opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)

    scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr)

    criterion = cal_loss

    best_test_acc = 0
    for epoch in range(args.epochs):
        scheduler.step()
        ####################
        # Train
        ####################
        train_loss = 0.0
        count = 0.0
        model.train()
        train_pred = []
        train_true = []
        for data, label in train_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            opt.zero_grad()
            logits = model(data)
            loss = criterion(logits, label)
            loss.backward()
            opt.step()
            preds = logits.max(dim=1)[1]
            count += batch_size
            train_loss += loss.item() * batch_size
            train_true.append(label.cpu().numpy())
            train_pred.append(preds.detach().cpu().numpy())
        train_true = np.concatenate(train_true)
        train_pred = np.concatenate(train_pred)
        outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (
            epoch, train_loss * 1.0 / count,
            metrics.accuracy_score(train_true, train_pred),
            metrics.balanced_accuracy_score(train_true, train_pred))
        io.cprint(outstr)

        ####################
        # Test
        ####################
        test_loss = 0.0
        count = 0.0
        model.eval()
        test_pred = []
        test_true = []
        for data, label in test_loader:
            data, label = data.to(device), label.to(device).squeeze()
            data = data.permute(0, 2, 1)
            batch_size = data.size()[0]
            logits = model(data)
            loss = criterion(logits, label)
            preds = logits.max(dim=1)[1]
            count += batch_size
            test_loss += loss.item() * batch_size
            test_true.append(label.cpu().numpy())
            test_pred.append(preds.detach().cpu().numpy())
        test_true = np.concatenate(test_true)
        test_pred = np.concatenate(test_pred)
        test_acc = metrics.accuracy_score(test_true, test_pred)
        avg_per_class_acc = metrics.balanced_accuracy_score(
            test_true, test_pred)
        outstr = 'Test %d, loss: %.6f, test acc: %.6f, test avg acc: %.6f' % (
            epoch, test_loss * 1.0 / count, test_acc, avg_per_class_acc)
        io.cprint(outstr)
        if test_acc >= best_test_acc:
            best_test_acc = test_acc
            torch.save(model.state_dict(),
                       'checkpoints/%s/models/model.t7' % args.exp_name)
示例#28
0
文件: main_cls.py 项目: layumi/dgcnn
def test(args, io):
    test_loader = DataLoader(ModelNet40(partition='test',
                                        num_points=args.num_points),
                             batch_size=args.test_batch_size,
                             shuffle=True,
                             drop_last=False)

    device = torch.device("cuda" if args.cuda else "cpu")

    #Try to load models
    if args.model == 'pointnet':
        model = PointNet(args).to(device)
    elif args.model == 'dgcnn':
        model = DGCNN(args).to(device)
    elif args.model == 'ssg':
        model = PointNet2SSG(output_classes=40, dropout_prob=0)
        model.to(device)
    elif args.model == 'msg':
        model = PointNet2MSG(output_classes=40, dropout_prob=0)
        model.to(device)
    elif args.model == 'ognet':
        # [64,128,256,512]
        model = Model_dense(20,
                            args.feature_dims, [512],
                            output_classes=40,
                            init_points=768,
                            input_dims=3,
                            dropout_prob=args.dropout,
                            id_skip=args.id_skip,
                            drop_connect_rate=args.drop_connect_rate,
                            cluster='xyzrgb',
                            pre_act=args.pre_act,
                            norm=args.norm_layer)
        if args.efficient:
            model = ModelE_dense(20,
                                 args.feature_dims, [512],
                                 output_classes=40,
                                 init_points=768,
                                 input_dims=3,
                                 dropout_prob=args.dropout,
                                 id_skip=args.id_skip,
                                 drop_connect_rate=args.drop_connect_rate,
                                 cluster='xyzrgb',
                                 pre_act=args.pre_act,
                                 norm=args.norm_layer,
                                 gem=args.gem,
                                 ASPP=args.ASPP)
        model.to(device)
    elif args.model == 'ognet-small':
        # [48,96,192,384]
        model = Model_dense(20,
                            args.feature_dims, [512],
                            output_classes=40,
                            init_points=768,
                            input_dims=3,
                            dropout_prob=args.dropout,
                            id_skip=args.id_skip,
                            drop_connect_rate=args.drop_connect_rate,
                            cluster='xyzrgb',
                            pre_act=args.pre_act,
                            norm=args.norm_layer)
        model.to(device)
    else:
        raise Exception("Not implemented")

    try:
        model.load_state_dict(torch.load(args.model_path))
    except:
        model = nn.DataParallel(model)
        model.load_state_dict(torch.load(args.model_path))
    model = model.eval()
    model = model.module

    batch0, label0 = next(iter(test_loader))
    batch0 = batch0[0].unsqueeze(0)
    print(batch0.shape)
    print(model)

    macs, params = get_model_complexity_info(model,
                                             batch0, ((1024, 3)),
                                             as_strings=True,
                                             print_per_layer_stat=False,
                                             verbose=True)

    print('{:<30}  {:<8}'.format('Computational complexity: ', macs))
    print('{:<30}  {:<8}'.format('Number of parameters: ', params))

    test_acc = 0.0
    count = 0.0
    test_true = []
    test_pred = []
    for data, label in test_loader:

        data, label = data.to(device), label.to(device).squeeze()
        batch_size = data.size()[0]
        if args.model == 'ognet' or args.model == 'ognet-small' or args.model == 'ssg' or args.model == 'msg':
            logits = model(data, data)
            #logits = model(1.1*data, 1.1*data)
        else:
            data = data.permute(0, 2, 1)
            logits = model(data)
        preds = logits.max(dim=1)[1]
        test_true.append(label.cpu().numpy())
        test_pred.append(preds.detach().cpu().numpy())
    test_true = np.concatenate(test_true)
    test_pred = np.concatenate(test_pred)
    test_acc = metrics.accuracy_score(test_true, test_pred)
    avg_per_class_acc = metrics.balanced_accuracy_score(test_true, test_pred)
    outstr = 'Test :: test acc: %.6f, test avg acc: %.6f' % (test_acc,
                                                             avg_per_class_acc)
    io.cprint(outstr)
示例#29
0
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
    #end function

####################################################################################3
if __name__ == '__main__':

    model = PointNet(k=1+199, feature_transform=args.feat_trans)

    test(model)
    #testBIWI(model)


示例#30
0
import sys
import torch
import torch.nn as nn
import numpy as np
from progressbar import ProgressBar
from model import PointNet
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, '..'))

category = sys.argv[1]
split = sys.argv[2]
print(category, split)

device = torch.device('cuda:0')

model = PointNet().to(device)
path = "./pointnet_modelnet40/checkpoints/pointnet_max_pc_2048_emb_1024/models/model.t7"
real_stat_save_path = "./gt_stats/pointnet_max_pc_2048_emb_1024/%s-%s.npz" % (
    category, split)

model.load_state_dict(torch.load(path))
model.eval()

print('Loading all real data ...')
real_pts = np.load('./gt_stats/real_pcs/%s-%s-real-pcs.npy' %
                   (category, split))
print('real_pts: ', real_pts.shape)

print('Calculating real statistics...')
b, _, _ = real_pts.shape
batch_size = 32