def run_rec(): # This is where we write the images, if an output_dir is given # in command line: out_dir = None # Now read in the image data. This must be a valid path! [X, y] = read_images('images') # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model.pkl', my_model) model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) #E = [] #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() im = Image.open('search.png') im = im.convert("L") predicted_label = model.predict(im)[0] print(predicted_label) return predicted_label
def run_rec(): # This is where we write the images, if an output_dir is given # in command line: out_dir = None # Now read in the image data. This must be a valid path! [X,y] = read_images('images') # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model.pkl', my_model) model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) #E = [] #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() im = Image.open('search.png') im = im.convert("L") predicted_label = model.predict(im)[0] print(predicted_label) return predicted_label
def get_model(numeric_dataset, model_filename=None): feature = ChainOperator(Resize((128,128)), SpatialHistogram()) #feature = ChainOperator(Resize((128,128)), Fisherfaces()) classifier = NearestNeighbor(dist_metric=NormalizedCorrelation(), k=1) print "kjasnanscal" #classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) inner_model = PredictableModel(feature=feature, classifier=classifier) model = PredictableModelWrapper(inner_model) model.set_data(numeric_dataset) model.compute() if not model_filename is None: save_model(model_filename, model) return model
# Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = SpatialHistogram() #feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=NormalizedCorrelation(), k=1) #classifier = SVM() # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('modelTry.pkl', my_model) model = load_model('modelTry.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] #for i in range(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10)
from PIL import Image import scipy from util import asRowMatrix import numpy as np import logging import matplotlib.cm as cm import pyttsx engine = pyttsx.init() engine.say('Hello SID,Welcome to the future,I am part of Romeos network') engine.runAndWait() engine.say( 'use this code no issues,there are a few bugs in me hope You will correct me' ) engine.runAndWait() model = PredictableModel(Fisherfaces(), NearestNeighbor()) face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml') recognizer = cv2.createLBPHFaceRecognizer() video_capture = cv2.VideoCapture(0) def read_images(path, sz=(256, 256)): X, y = [], [] folder_names = [] default = 'Unknown' for dirname, dirnames, filenames in os.walk(path): for subdirname in dirnames: default = 'Unknown' folder_names.append(subdirname) subject_path = os.path.join(dirname, subdirname)
[X, y] = read_images(FACE_DETECT_FOLDER) # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model("model.pkl", my_model) model = load_model("model.pkl") # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:, i].reshape(X[0].shape) E.append(minmax_normalize(e, 0, 255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot( title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png" )
from feature import Fisherfaces from classifier import NearestNeighbor from model import PredictableModel from fisc import * model = PredictableModel(Fisherfaces(), NearestNeighbor()) [X, y] = read_images("./resources/att_faces/") model.compute(X, y) model.predict(X)