示例#1
0
文件: eval.py 项目: yiyang-wang/AFN
                     extract=False,
                     dropout_p=args.dropout_p).cuda()
netG.eval()
netF.eval()

for epoch in range(args.epoch / 2, args.epoch + 1):
    if epoch % 10 != 0:
        continue
    netG.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "Office31_HAFN_" + args.task + "_netG_" +
                args.post + "." + args.repeat + "_" + str(epoch) + ".pth")))
    netF.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "Office31_HAFN_" + args.task + "_netF_" +
                args.post + "." + args.repeat + "_" + str(epoch) + ".pth")))
    correct = 0
    tick = 0
    for (imgs, labels) in t_loader:
        tick += 1
        imgs = Variable(imgs.cuda())
        pred = netF(netG(imgs))
        pred = F.softmax(pred)
        pred = pred.data.cpu().numpy()
        pred = pred.argmax(axis=1)
        labels = labels.numpy()
        correct += np.equal(labels, pred).sum()

    correct = correct * 1.0 / len(t_set)
示例#2
0
netF = ResClassifier(class_num=args.class_num).cuda()
netG.eval()
netF.eval()

for epoch in range(args.epoch / 2, args.epoch + 1):
    if epoch % 10 != 0:
        continue

    netG.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "VisDA_IAFN_netG_" + args.post + '.' +
                str(args.repeat) + '_' + str(epoch) + ".pth")))
    netF.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "VisDA_IAFN_netF_" + args.post + '.' +
                str(args.repeat) + '_' + str(epoch) + ".pth")))

    correct = 0
    tick = 0

    for (imgs, labels) in t_loader:
        tick += 1
        imgs = Variable(imgs.cuda())
        pred = netF(netG(imgs))
        pred = F.softmax(pred)
        pred = pred.data.cpu().numpy()
        pred = pred.argmax(axis=1)
        labels = labels.numpy()
        correct += np.equal(labels, pred).sum()
示例#3
0
文件: eval.py 项目: redhat12345/AFN
netG = ResBase50().cuda()
netF = ResClassifier(class_num=args.class_num, extract=False).cuda()
netG.eval()
netF.eval()

for epoch in range(1, args.epoch + 1):
    if epoch % 10 != 0:
        continue
    netG.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "OfficeHome_IAFN_" + args.task + "_netG_" +
                args.post + '.' + args.repeat + '_' + str(epoch) + ".pth")))
    netF.load_state_dict(
        torch.load(
            os.path.join(
                args.snapshot, "OfficeHome_IAFN_" + args.task + "_netF_" +
                args.post + '.' + args.repeat + '_' + str(epoch) + ".pth")))

    correct = 0
    tick = 0
    for (imgs, labels) in t_loader:
        tick += 1
        imgs = Variable(imgs.cuda())
        pred = netF(netG(imgs))
        pred = F.softmax(pred)
        pred = pred.data.cpu().numpy()
        pred = pred.argmax(axis=1)
        labels = labels.numpy()
        correct += np.equal(labels, pred).sum()