示例#1
0
文件: test.py 项目: wkim97/ee474-1
def test_autoencoder(epoch_plus, text, index):
    use_gpu = torch.cuda.is_available()
    ngpu = torch.cuda.device_count()
    device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")

    model = SegNet(3)
    if ngpu > 1:
        model = nn.DataParallel(model)
    if use_gpu:
        model = model.to(device, non_blocking=True)
        text = text.to(device, non_blocking=True)
    if epoch_plus > 0:
        model.load_state_dict(torch.load('./autoencoder_models_2/autoencoder_{}.pth'.format(epoch_plus)))

    model.eval()

    if use_gpu:
        text.to(device, non_blocking=True)

    predicted = model(text)
    predicted[predicted > 1.0] = 1.0

    save_path1 = './results/text'
    save_path2 = './results/masked'
    if not os.path.exists(save_path1):
        os.mkdir(save_path1)
    if not os.path.exists(save_path2):
        os.mkdir(save_path2)

    binary_predicted = predicted.clone()
    binary_mask = predicted.clone()
    binary_predicted[binary_predicted > 0.0] = 1.0
    binary_mask[binary_mask > 0.1] = 1.0
    masked = text + binary_mask
    masked[masked > 1.0] = 1.0

    trans = torchvision.transforms.ToPILImage()

    predicted = predicted.squeeze().cpu()
    masked = masked.squeeze().cpu()
    image = trans(predicted)
    image2 = trans(masked)
    image.save(os.path.join(save_path1, 'text_{}.png'.format(index)))
    image2.save(os.path.join(save_path2, 'masked_{}.png'.format(index)))
    del text
    del predicted
    del masked
    del binary_predicted
示例#2
0
def main():
	model_dir = './checkpoints/seg2/segnet_gen1/model_at_epoch_013.dat'
	save_dir = './test/0610/segnet_gen1/test'
	test_txt_path = './data/seg/valid.txt'

	# model = unet(in_channel=1, n_classes=1)
	model = SegNet(input_nbr = 1, label_nbr = 1)
	model = load_model(model, model_dir)
	model = model.cuda()
	model.eval()

	test_dataset = GuideWireDataset(test_txt_path)
	test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
	prefetcher = data_prefetcher(test_loader)
	input, target, distance = prefetcher.next()

	dice = []
	IoU = []
	precision = []
	recall = []

	i = -1
	while input is not None:
		i += 1
		with torch.no_grad():
			output = model(input)
			dice.append(dice_coeff(output, target).item())
			IoU.append(iou_coeff(output, target).item())
			precision.append(Precision(output, target).item())
			recall.append(Recall(output, target).item())

			output = torch.sigmoid(output).squeeze().data.cpu().numpy()
			output[output < 0.5] = 0
			output[output >= 0.5] = 1
			# output = torch.argmax(output, dim=1).squeeze().data.cpu().numpy()
			# output = output.squeeze().data.cpu().numpy()
			# output = np.argmax(output, axis=0)
			cv2.imwrite(os.path.join(save_dir, str(i) + '_output.jpg'), output * 255)
			print(str(i) + ' finish!')

		input, target, distance = prefetcher.next()
	print('dice: ', np.mean(dice), np.max(dice), np.min(dice), np.std(dice))
	print('iou: ', np.mean(IoU), np.max(IoU), np.min(IoU), np.std(IoU))
	print('precision: ', np.mean(precision), np.max(precision), np.min(precision), np.std(precision))
	print('recall: ', np.mean(recall), np.max(recall), np.min(recall), np.std(recall))
示例#3
0
def test(args):
    cfg = load_cfg(args.cfg)
    weight_path = args.wts
    img_path = args.im_path

    segnet = SegNet().float().cuda()
    segnet.load_state_dict(torch.load(weight_path))
    segnet.eval()

    im = cv2.imread(img_path).transpose(2, 0, 1)
    im = torch.tensor(im[np.newaxis, :], dtype=torch.float).cuda()
    out = segnet(im)
    out = out.detach().cpu().numpy().transpose(0, 2, 3, 1)
    out = np.argmax(out, axis=3).astype(np.uint8)[0]
    out = out[:, :, np.newaxis]
    out = out * 20
    cv2.imshow('f**k', out)
    cv2.waitKey(0)
示例#4
0
文件: predict.py 项目: wkim97/ee474-1
def predict_image(dir):
    use_gpu = torch.cuda.is_available()
    ngpu = torch.cuda.device_count()
    device = torch.device("cuda:0" if (
        torch.cuda.is_available() and ngpu > 0) else "cpu")

    image_to_tensor = torchvision.transforms.ToTensor()
    tensor_to_image = torchvision.transforms.ToPILImage()

    save_path = Path(dir).parent

    image = Image.open(dir).convert('RGB')
    image = image_to_tensor(image)
    c, w, h = image.shape
    image = torch.reshape(image, (1, c, w, h))

    model = SegNet(3)
    if use_gpu:
        model = model.to(device, non_blocking=True)
        image = image.to(device, non_blocking=True)
    model.load_state_dict(torch.load('./models/model.pth',
                                     map_location=device))

    model.eval()

    predicted = model(image)
    predicted[predicted > 1.0] = 1.0

    binary_predicted = predicted.clone()
    binary_mask = predicted.clone()
    binary_predicted[binary_predicted > 0.0] = 1.0
    binary_mask[binary_mask > 0.1] = 1.0
    masked = image + binary_mask
    masked[masked > 1.0] = 1.0

    predicted = predicted.squeeze().cpu()
    masked = masked.squeeze().cpu()
    image = tensor_to_image(predicted)
    image2 = tensor_to_image(masked)
    image.save(os.path.join(save_path, 'tmp_text.png'))
    image2.save(os.path.join(save_path, 'tmp_masked.png'))
示例#5
0
print("Selected model's pixelwise accuracy on test dataset : {:.5f}%".format(
    test_accuracy * 100))

# visualize some outputs
model_selected = model
show_all(model_selected, X_test[2, :], y_test[2, :], cmap='jet')
show_all(model_selected, X_test[11, :], y_test[11, :], cmap='jet')
show_all(model_selected, X_test[-2, :], y_test[-2, :], cmap='jet')
show_all(model_selected, X_test[43, :], y_test[43, :], cmap='jet')
show_all(model_selected, X_train[2, :], y_train[2, :], cmap='jet')
show_all(model_selected, X_train[11, :], y_train[11, :], cmap='jet')
show_all(model_selected, X_train[-2, :], y_train[-2, :], cmap='jet')
show_all(model_selected, X_train[43, :], y_train[43, :], cmap='jet')

# demo on a kitti image
model.eval()
kitti_img = cv2.imread(
    "/content/gdrive/MyDrive/Segmentation/KiTTi/um_000007.png")
kitti_tensor = torch.from_numpy(np.moveaxis(kitti_img, -1, 0))
show_img(kitti_tensor)
show_pred_mask(model, kitti_tensor.float())
show_all(model, kitti_tensor.float(), kitti_tensor.float()[0, :])

# write results to disk
model_load = model
load_dir = r'/content/gdrive/MyDrive/KiTTi_dataset/testing_crop'
save_dir = r'/content/gdrive/MyDrive/KiTTi_dataset/testing_crop_segnet_new'
write_to_dir(model_load, load_dir, save_dir)

load_dir = r'/content/gdrive/MyDrive/KiTTi_dataset/training_crop'
save_dir = r'/content/gdrive/MyDrive/KiTTi_dataset/training_crop_segnet_new'