height = 36 N_cust = 120 pixel_ratio = 20 num_agents = 12 theme = "cluster" strategy = "Random_test_4" steps = 520 RUNS = 65 strategies = [0, 0.25, 0.5, 0.75, 1] adaptive = True cust_d, score_d, hapiness_d, hist_d, strategy_d, dict2 = [], [], [], [], [], [] for run in range(RUNS): print("RUN ", run) park = Themepark(num_agents, N_cust, width, height, strategy, theme, steps, strategies, adaptive) for i in range(steps + 1): print("step", i) park.step() print("Number of run:", run) try: cust = pickle.load(open("data/customers.p", 'rb')) score = pickle.load(open("data/park_score.p", "rb")) hapiness = pickle.load(open("data/hapiness.p", "rb")) hist = pickle.load(open("data/cust_history.p", 'rb')) strategy_hist = pickle.load(open("data/strategy_history.p", 'rb')) dict2_data = pickle.load(open("data/eff_score_history.p", 'rb')) except:
strategies = [0, 0.25, 0.5, 0.75, 1, "Random"] N_cust = 120 num_agents = 12 steps = 520 RUNS = 65 cust_d, score_d, hapiness_d, hist_d, strat_d, score_ed = [], [], [], [], [], [] for j in range(RUNS): print() print("RUN ", j) print() park = Themepark(num_agents, N_cust, width, height, strategy, theme, steps, None) for i in range(steps + 1): print("step", i) park.step() cust = pickle.load(open("../data/customers.p", 'rb')) score = pickle.load(open("../data/park_score.p", "rb")) hapiness = pickle.load(open("../data/hapiness.p", "rb")) hist = pickle.load(open("../data/cust_history.p", 'rb')) strategy_hist = pickle.load(open("../data/stategy_history.p", 'rb')) cust_d.append(cust) score_d.append(score) hapiness_d.append(hapiness) hist_d.append(hist)