示例#1
0
def _main_(args):
    config_path = args.conf
    weights_path = args.weights
    image_path = args.input

    with open(config_path) as config_buffer:
        config = json.load(config_buffer)

    yolo = YOLO(backend=config['model']['architecture'],
                input_size=config['model']['input_size'],
                labels=config['model']['labels'],
                max_box_per_image=config['model']['max_box_per_image'],
                anchors=config['model']['anchors'])

    yolo.load_weights(weights_path)

    if image_path[-4:] == '.mp4':
        video_out = image_path[:-4] + '_detected' + image_path[-4:]
        video_reader = cv2.VideoCapture(image_path)

        nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))

        video_writer = cv2.VideoWriter(video_out,
                                       cv2.VideoWriter_fourcc(*'MPEG'), 50.0,
                                       (frame_w, frame_h))

        for i in tqdm(range(nb_frames)):
            _, image = video_reader.read()

            boxes = yolo.predict(image)
            image = draw_boxes(image, boxes, config['model']['labels'])
            video_writer.write(np.uint8(image))
        video_reader.release()
        video_writer.release()
    else:
        image = cv2.imread(image_path)
        boxes = yolo.predict(image)
        image = draw_boxes(image, boxes, config['model']['labels'])

        print(len(boxes), 'boxes are found')
        cv2.imwrite(image_path[:-4] + '_result' + image_path[-4:], image)
示例#2
0
def load_model(modules):
    model = YOLO(modules)
    model.to(DEVICE)
    model.load_weights('./weights/yolov3.weights')
    return model