示例#1
0
else:
    AV_model = AV.AV_model(people_num)

train_generator = AVGenerator(trainfile,
                              database_dir_path=database_dir_path,
                              batch_size=batch_size,
                              shuffle=True)
val_generator = AVGenerator(valfile,
                            database_dir_path=database_dir_path,
                            batch_size=batch_size,
                            shuffle=True)

if NUM_GPU > 1:
    parallel_model = ModelMGPU(AV_model, NUM_GPU)
    adam = optimizers.Adam()
    loss = audio_loss(gamma=gamma_loss, beta=beta_loss, num_speaker=people_num)
    parallel_model.compile(loss=loss, optimizer=adam)
    print(AV_model.summary())
    parallel_model.fit_generator(
        generator=train_generator,
        validation_data=val_generator,
        epochs=epochs,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        callbacks=[TensorBoard(log_dir='./log_AV'), checkpoint, rlr],
        initial_epoch=initial_epoch)
if NUM_GPU <= 1:
    adam = optimizers.Adam()
    loss = audio_loss(gamma=gamma_loss, beta=beta_loss, num_speaker=people_num)
    AV_model.compile(optimizer=adam, loss=loss)
    print(AV_model.summary())
示例#2
0
    valfile = v.readlines()
AV_model = AV.AV_model(people_num)

train_loader = DataLoader(
    AVGenerator(trainfile,
                database_dir_path=database_dir_path,
                batch_size=batch_size,
                shuffle=True))
val_loader = DataLoader(
    AVGenerator(valfile,
                database_dir_path=database_dir_path,
                batch_size=batch_size,
                shuffle=True))

optimizer = torch.optim.Adam(AV_model.parameters(), lr=1e-4)
lossfunc = audio_loss(gamma=gamma_loss, num_speaker=people_num)
for epoch in range(0, num_epoch):
    print(epoch)
    for batch in train_loader:
        preds = AV_model(Variable(batch[0]))
        loss = lossfunc(preds, Variable(batch[1]))
        print(loss)
        loss.backward()
        optimizer.step()
    if epoch % 10 == 0:
        torch.save(AV_model.state_dict(), str(epoch) + '.pt')

import os
import scipy.io.wavfile as wavfile
import numpy as np
import utils