def PWC_full(B,
                     lvl_h,
                     lvl_w,
                     pwc_h,
                     pwc_w,
                     lvl,
                     frameNum=5,
                     blur=False):
            ratio_h = float(lvl_h) / float(pwc_h)
            ratio_w = float(lvl_w) / float(pwc_w)
            nn = ModelPWCNet(mode='test', options=nn_opts)
            nn.print_config()
            for i in range(frameNum):
                B[i] = tf.image.resize_bilinear(B[i], (pwc_h, pwc_w),
                                                align_corners=True)

            tmp_list = []
            for i in range(frameNum):
                for j in range(frameNum):
                    tmp_list.append(tf.stack([B[i], B[j]], 1))

            PWC_input = tf.concat(tmp_list, 0)  # [batch_size*20, 2, H, W, 3]
            PWC_input = tf.reshape(
                PWC_input,
                [FLAGS.batch_size * (frameNum * frameNum), 2, pwc_h, pwc_w, 3])
            pred_labels, _ = nn.nn(PWC_input, reuse=tf.AUTO_REUSE)
            print(pred_labels)

            pred_labels = tf.image.resize_bilinear(pred_labels, (lvl_h, lvl_w),
                                                   align_corners=True)
            """
            0: W
            1: H
            """
            ratio_tensor = tf.expand_dims(
                tf.expand_dims(
                    tf.expand_dims(
                        tf.convert_to_tensor(np.asarray([ratio_w, ratio_h]),
                                             dtype=tf.float32), 0), 0), 0)

            FB = []
            counter = 0
            for i in range(frameNum):
                FB_tmp = []
                for j in range(frameNum):
                    FB_tmp.append(
                        tf.stop_gradient(pred_labels[FLAGS.batch_size *
                                                     counter:FLAGS.batch_size *
                                                     (counter + 1)] *
                                         ratio_tensor))
                    counter += 1
                FB.append(FB_tmp)

            return FB
示例#2
0
def load_optical_flow_model():
    # Here, we're using a GPU (use '/device:CPU:0' to run inference on the CPU)
    gpu_devices = ['/device:GPU:0']
    controller = '/device:GPU:0'

    # Set the path to the trained model
    ckpt_path = ROOT_DIR + '/models/pwcnet-lg-6-2-multisteps-chairsthingsmix/pwcnet.ckpt-595000'

    # Configure the model for inference, starting with the default options
    nn_opts = deepcopy(_DEFAULT_PWCNET_TEST_OPTIONS)
    nn_opts['verbose'] = True
    nn_opts['ckpt_path'] = ckpt_path
    nn_opts['batch_size'] = 1
    nn_opts['gpu_devices'] = gpu_devices
    nn_opts['controller'] = controller

    # We're running the PWC-Net-large model in quarter-resolution mode
    # That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
    nn_opts['use_dense_cx'] = True
    nn_opts['use_res_cx'] = True
    nn_opts['pyr_lvls'] = 6
    nn_opts['flow_pred_lvl'] = 2

    # The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
    # of 64. Hence, we need to crop the predicted flows to their original size
    nn_opts['adapt_info'] = (1, 436, 1024, 2)

    # Instantiate the model in inference mode and display the model configuration
    nn = ModelPWCNet(mode='test', options=nn_opts)

    #Return model
    return nn
    def build_pwc_net_model(self, H, W):
        '''
        Parameters
        ----------
        H, W : int
            image mering height/width.

        Returns
        -------
        None.

        '''
        gpu_devices = ['/device:CPU:0']
        controller = '/device:CPU:0'
        
        os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tfoptflow/', 'tfoptflow/')
        ckpt_path = self.pwc_net_weight_path

        # Configure the model for inference, starting with the default options
        nn_opts = deepcopy(_DEFAULT_PWCNET_TEST_OPTIONS)
        nn_opts['verbose'] = True
        nn_opts['ckpt_path'] = ckpt_path
        nn_opts['batch_size'] = 1
        nn_opts['gpu_devices'] = gpu_devices
        nn_opts['controller'] = controller

        # We're running the PWC-Net-large model in quarter-resolution mode
        # That is, with a 6 level pyramid, and upsampling of level 2 by 4 in
        # each dimension as the final flow prediction
        nn_opts['use_dense_cx'] = True
        nn_opts['use_res_cx'] = True
        nn_opts['pyr_lvls'] = 6
        nn_opts['flow_pred_lvl'] = 2

        # The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
        # of 64. Hence, we need to crop the predicted flows to their original
        # size
        nn_opts['adapt_info'] = (1, H, W, 2)

        # Instantiate the model in inference mode and display the model
        # configuration
        nn = ModelPWCNet(mode='test', options=nn_opts)
        nn.print_config()
        self.pwc_net_model = nn
示例#4
0
def _main():

    # Set controller device and devices
    # A one-gpu setup would be something like controller='/device:GPU:0' and gpu_devices=['/device:GPU:0']
    gpu_devices = ['/device:GPU:0']
    controller = '/device:CPU:0'

    # Useful settings
    batch_size = 4
    img_size = (448, 256)
    """
    # Dataset options
    ds_opts = {
        'batch_size': batch_size,
        'verbose': True,
        'in_memory': False,  # True loads all samples upfront, False loads them on-demand
        'crop_preproc': None,  # None or (h, w), use (384, 768) for FlyingThings3D
        'scale_preproc': img_size,  # None or (h, w),
        'type': 'noc', # ['clean' | 'final'] for MPISintel, ['noc' | 'occ'] for KITTI, 'into_future' for FlyingThings3D
        'tb_test_imgs': False,  # If True, make test images available to model in training mode
        # Sampling and split options
        'random_seed': 1337,  # random seed used for sampling
        'val_split': 0.01,  # portion of data reserved for the validation split
        # Augmentation options
        'aug_type': 'heavy',  # in [None, 'basic', 'heavy'] to add augmented data to training set
        'aug_labels': True,  # If True, augment both images and labels; otherwise, only augment images
        'fliplr': 0.5,  # Horizontally flip 50% of images
        'flipud': 0.0,  # Vertically flip 50% of images
        'translate': (0., 0.), # Translate 50% of images by a value between -5 and +5 percent of original size on x- and y-axis independently
        'scale': (0., 0.),  # Scale 50% of images by a factor between 95 and 105 percent of original size
    }

    # Load train dataset
    ds_1 = KITTIDataset(mode='train_with_val', ds_root=data_path + kitti12, options=ds_opts)
    ds_2 = KITTIDataset(mode='train_with_val', ds_root=data_path + kitti15, options=ds_opts)
    ds = MixedDataset(mode='train_with_val', datasets=[ds_1, ds_2], options=ds_opts)

    """
    # Dataset options
    ds_opts = {
        'batch_size': batch_size,
        'verbose': True,
        'in_memory':
        False,  # True loads all samples upfront, False loads them on-demand
        'crop_preproc':
        None,  # None or (h, w), use (384, 768) for FlyingThings3D
        'scale_preproc': img_size,  # None or (h, w),
        # ['clean' | 'final'] for MPISintel, ['noc' | 'occ'] for KITTI, 'into_future' for FlyingThings3D
        'type': 'into_future',
        'tb_test_imgs':
        False,  # If True, make test images available to model in training mode
        # Sampling and split options
        'random_seed': 1337,  # random seed used for sampling
        'val_split': 0.01,  # portion of data reserved for the validation split
        # Augmentation options
        'aug_type':
        'heavy',  # in [None, 'basic', 'heavy'] to add augmented data to training set
        'aug_labels':
        True,  # If True, augment both images and labels; otherwise, only augment images
        'fliplr': 0.5,  # Horizontally flip 50% of images
        'flipud': 0.0,  # Vertically flip 50% of images
        # Translate 50% of images by a value between -5 and +5 percent of original size on x- and y-axis independently
        'translate': (0, 0),
        'scale': (
            0, 0
        ),  # Scale 50% of images by a factor between 95 and 105 percent of original size
        'train_imgs': _TRAIN_IMGS,
        'train_flow': _TRAIN_FLOW,
        'test_imgs': _TEST_IMGS,
    }

    ds = FlowDroNetDataset(mode='train_with_val',
                           ds_root=_DATASET_ROOT,
                           options=ds_opts)

    # Display dataset configuration
    ds.print_config()
    """
    # Fine-Tuning options (Large)
    nn_opts = {
        'verbose': True,
        'ckpt_path': ckpt_path,  # original checkpoint to finetune
        'ckpt_dir': save_path,  # where finetuning checkpoints are stored
        'max_to_keep': 10,
        'x_dtype': tf.float32,  # image pairs input type
        'x_shape': [2, img_size[1], img_size[0], 3],  # image pairs input shape [2, H, W, 3]
        'y_dtype': tf.float32,  # u,v flows output type
        'y_shape': [img_size[1], img_size[0], 2],  # u,v flows output shape [H, W, 2]
        'train_mode': 'fine-tune',  # in ['train', 'fine-tune']
        'adapt_info': None,  # if predicted flows are padded by the model, crop them back by to this size
        'sparse_gt_flow': False,  # if gt flows are sparse (KITTI), only compute average EPE where gt flows aren't (0., 0.)
        # Logging/Snapshot params
        'display_step': 10,  # show progress every 100 training batches
        'snapshot_step': 500,  # save trained model every 1000 training batches
        'val_step': 1000,  # Test trained model on validation split every 1000 training batches
        'val_batch_size': 100,  # Use -1 to use entire validation split, or set number of val samples (0 disables it)
        'tb_val_imgs': 'top_flow',  # None, 'top_flow', or 'pyramid'; runs model on batch_size val images, log results
        'tb_test_imgs': None,  # None, 'top_flow', or 'pyramid'; runs trained model on batch_size test images, log results
        # Multi-GPU config
        # list devices on which to run the model's train ops (can be more than one GPU)
        'gpu_devices': gpu_devices,
        # controller device to put the model's variables on (usually, /cpu:0 or /gpu:0 -> try both!)
        'controller': controller,
        # Training config and hyper-params
        'use_tf_data': False,  # Set to True to get data from tf.data.Dataset; otherwise, use feed_dict with numpy
        'use_mixed_precision': False,  # Set to True to use mixed precision training (fp16 inputs)
        'loss_scaler': 128.,  # Loss scaler (only used in mixed precision training)
        'batch_size': batch_size * len(gpu_devices),
        'lr_policy': 'multisteps',  # choose between None, 'multisteps', and 'cyclic'; adjust the max_steps below too
        # Multistep lr schedule
        'init_lr': 1e-05,  # initial learning rate
        'max_steps': 25000,  # max number of training iterations (i.e., batches to run)
        'lr_boundaries': [5000, 10000, 15000, 20000],  # step schedule boundaries
        'lr_values': [1e-05, 5e-06, 2.5e-06, 1.25e-06, 6.25e-07],  # step schedule values
        # Cyclic lr schedule
        'cyclic_lr_max': 2e-05,  # maximum bound
        'cyclic_lr_base': 1e-06,  # min bound
        'cyclic_lr_stepsize': 20000 * 8 / ds_opts['batch_size'],  # step schedule values
        # 'max_steps': 200000, # max number of training iterations
        # Loss functions hyper-params
        'loss_fn': 'loss_multiscale',  # 'loss_robust' doesn't really work; the loss goes down but the EPE doesn't
        'alphas': [0.32, 0.08, 0.02, 0.01, 0.005],  # See 'Implementation details" on page 5 of ref PDF
        'gamma': 0.0004,  # See 'Implementation details" on page 5 of ref PDF
        'q': 0.4,  # See 'Implementation details" on page 5 of ref PDF
        'epsilon': 0.01,  # See 'Implementation details" on page 5 of ref PDF
        # Model hyper-params
        'pyr_lvls': 6,  # number of feature levels in the flow pyramid
        'flow_pred_lvl': 2,  # which level to upsample to generate the final optical flow prediction
        'search_range': 4,  # cost volume search range
        # if True, use model with dense connections (4705064 params w/o, 9374274 params with (no residual conn.))
        'use_dense_cx': True,
        # if True, use model with residual connections (4705064 params w/o, 6774064 params with (+2069000) (no dense conn.))
        'use_res_cx': True,
    }
    """
    # Fine-Tuning options (Small)
    nn_opts = {
        'verbose': True,
        'ckpt_path': ckpt_path,  # original checkpoint to finetune
        'ckpt_dir': save_path,  # where finetuning checkpoints are stored
        'max_to_keep': 10,
        'x_dtype': tf.float32,  # image pairs input type
        'x_shape': [2, img_size[1], img_size[0],
                    3],  # image pairs input shape [2, H, W, 3]
        'y_dtype': tf.float32,  # u,v flows output type
        'y_shape': [img_size[1], img_size[0],
                    2],  # u,v flows output shape [H, W, 2]
        'train_mode': 'fine-tune',  # in ['train', 'fine-tune']
        'adapt_info':
        None,  # if predicted flows are padded by the model, crop them back by to this size
        'sparse_gt_flow':
        False,  # if gt flows are sparse (KITTI), only compute average EPE where gt flows aren't (0., 0.)
        # Logging/Snapshot params
        'display_step': 100,  # show progress every 100 training batches
        'snapshot_step': 500,  # save trained model every 1000 training batches
        'val_step':
        500,  # Test trained model on validation split every 1000 training batches
        'val_batch_size':
        20,  # Use -1 to use entire validation split, or set number of val samples (0 disables it)
        'tb_val_imgs':
        'top_flow',  # None, 'top_flow', or 'pyramid'; runs model on batch_size val images, log results
        'tb_test_imgs':
        None,  # None, 'top_flow', or 'pyramid'; runs trained model on batch_size test images, log results
        # Multi-GPU config
        # list devices on which to run the model's train ops (can be more than one GPU)
        'gpu_devices': gpu_devices,
        # controller device to put the model's variables on (usually, /cpu:0 or /gpu:0 -> try both!)
        'controller': controller,
        # Training config and hyper-params
        'use_tf_data':
        False,  # Set to True to get data from tf.data.Dataset; otherwise, use feed_dict with numpy
        'use_mixed_precision':
        False,  # Set to True to use mixed precision training (fp16 inputs)
        'loss_scaler':
        128.,  # Loss scaler (only used in mixed precision training)
        'batch_size': batch_size * len(gpu_devices),
        'lr_policy':
        'multisteps',  # choose between None, 'multisteps', and 'cyclic'; adjust the max_steps below too
        # Multistep lr schedule
        'init_lr': 1e-05,  # initial learning rate
        'max_steps':
        25000,  # max number of training iterations (i.e., batches to run)
        'lr_boundaries': [5000, 10000, 15000,
                          20000],  # step schedule boundaries
        'lr_values': [1e-05, 5e-06, 2.5e-06, 1.25e-06,
                      6.25e-07],  # step schedule values
        # Cyclic lr schedule
        'cyclic_lr_max': 2e-05,  # maximum bound
        'cyclic_lr_base': 1e-06,  # min bound
        'cyclic_lr_stepsize':
        20000 * 8 / ds_opts['batch_size'],  # step schedule values
        # 'max_steps': 200000, # max number of training iterations
        # Loss functions hyper-params
        'loss_fn':
        'loss_multiscale',  # 'loss_robust' doesn't really work; the loss goes down but the EPE doesn't
        'alphas': [0.32, 0.08, 0.02, 0.01,
                   0.005],  # See 'Implementation details" on page 5 of ref PDF
        'gamma': 0.0004,  # See 'Implementation details" on page 5 of ref PDF
        'q': 0.4,  # See 'Implementation details" on page 5 of ref PDF
        'epsilon': 0.01,  # See 'Implementation details" on page 5 of ref PDF
        # Model hyper-params
        'pyr_lvls': 6,  # number of feature levels in the flow pyramid
        'flow_pred_lvl':
        2,  # which level to upsample to generate the final optical flow prediction
        'search_range': 4,  # cost volume search range
        # if True, use model with dense connections (4705064 params w/o, 9374274 params with (no residual conn.))
        'use_dense_cx': False,
        # if True, use model with residual connections (4705064 params w/o, 6774064 params with (+2069000) (no dense conn.))
        'use_res_cx': False,
    }

    # Instantiate the model and display the model configuration
    nn = ModelPWCNet(mode='train_with_val', options=nn_opts, dataset=ds)
    nn.print_config()

    # Train the model
    nn.train()
示例#5
0
    image_path2 = f'./samples/mpisintel_test_clean_ambush_1_frame_00{pair+1:02d}.png'
    image1, image2 = imread(image_path1), imread(image_path2)
    img_pairs.append((image1, image2))

# Configure the model for inference, starting with the default options
nn_opts = deepcopy(_DEFAULT_PWCNET_TEST_OPTIONS)
nn_opts['verbose'] = True
nn_opts['ckpt_path'] = ckpt_path
nn_opts['batch_size'] = 1
nn_opts['gpu_devices'] = gpu_devices
nn_opts['controller'] = controller

# We're running the PWC-Net-large model in quarter-resolution mode
# That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
nn_opts['use_dense_cx'] = True
nn_opts['use_res_cx'] = True
nn_opts['pyr_lvls'] = 6
nn_opts['flow_pred_lvl'] = 2

# The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
# of 64. Hence, we need to crop the predicted flows to their original size
nn_opts['adapt_info'] = (1, 436, 1024, 2)

# Instantiate the model in inference mode and display the model configuration
nn = ModelPWCNet(mode='test', options=nn_opts)
nn.print_config()

# Generate the predictions and display them
pred_labels = nn.predict_from_img_pairs(img_pairs, batch_size=1, verbose=False)
display_img_pairs_w_flows(img_pairs, pred_labels)
示例#6
0
nn_opts['cyclic_lr_base'] = 1e-05
nn_opts['cyclic_lr_stepsize'] = 20000
nn_opts['max_steps'] = 200000

# Below,we adjust the schedule to the size of the batch and our number of GPUs (2).
nn_opts['cyclic_lr_stepsize'] /= len(gpu_devices)
nn_opts['max_steps'] /= len(gpu_devices)
nn_opts['cyclic_lr_stepsize'] = int(nn_opts['cyclic_lr_stepsize'] /
                                    (float(ds_opts['batch_size']) / 8))
nn_opts['max_steps'] = int(nn_opts['max_steps'] /
                           (float(ds_opts['batch_size']) / 8))

# In[7]:

# Instantiate the model and display the model configuration
nn = ModelPWCNet(mode='train_with_val', options=nn_opts, dataset=ds)
nn.print_config()

# ## Train the model

# In[8]:

# Train the model
nn.train()

# ## Training log

# Here are the training curves for the run above:
#
# ![](img/pwcnet-lg-6-2-cyclic-chairsthingsmix/loss.png)
# ![](img/pwcnet-lg-6-2-cyclic-chairsthingsmix/epe.png)
示例#7
0
    nn_opts['gpu_devices'] = gpu_devices
    nn_opts['controller'] = controller

    # We're running the PWC-Net-large model in quarter-resolution mode
    # That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
    nn_opts['use_dense_cx'] = True
    nn_opts['use_res_cx'] = True
    nn_opts['pyr_lvls'] = 6
    nn_opts['flow_pred_lvl'] = 2

    # The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
    # of 64. Hence, we need to crop the predicted flows to their original size
    nn_opts['adapt_info'] = (1, 96*2, 96*2, 2) # check, for better prediction, we multiply x2 (in larger spatial resolution)

    # Instantiate the model in inference mode and display the model configuration
    nn = ModelPWCNet(mode='test', options=nn_opts)

    # Read data from mat file
    data_path = 'E:/FISR_Github/data/train/LR_LFR/LR_Surfing_SlamDunk_5seq.mat' # check, the path where your .mat file located.
    data = read_mat_file(data_path, 'LR_data') 
    sz = data.shape  #  check, in our case [N, 5, 96, 96, 3]


    img_pairs = []
    scale = 2 # check, upscaling factor for spatial resolution
    ss = 1 # check, temporal stride (1 or 2)
    pred = np.zeros((sz[0], 8//ss, sz[2], sz[3], 2), dtype=np.float32) # check, in our case
    for num in range(sz[0]):  
        for seq in range(sz[1]-(ss*2-1)):
            rgb_1 = YUV2RGB_matlab(data[num, ss*seq, :, :, :]) # check, since PWC-Net works on RGB images, we have to convert our YUV dataset.
            rgb_2 = YUV2RGB_matlab(data[num, ss*(seq+1), :, :, :])
示例#8
0
nn_opts['ckpt_path'] = ckpt_path
nn_opts['batch_size'] = batch_size
nn_opts['use_tf_data'] = True
nn_opts['gpu_devices'] = gpu_devices
nn_opts['controller'] = controller

# We're running the PWC-Net-large model in quarter-resolution mode
# That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
nn_opts['use_dense_cx'] = True
nn_opts['use_res_cx'] = True
nn_opts['pyr_lvls'] = 6
nn_opts['flow_pred_lvl'] = 2

# The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
# of 64. Hence, we need to crop the predicted flows to their original size
nn_opts['adapt_info'] = (1, 436, 1024, 2)

# Instantiate the model in inference mode and display the model configuration
nn = ModelPWCNet(mode='test', options=nn_opts, dataset=ds)
nn.print_config()

# Generate the predictions and save them directly to disk; no need to return them here
nn.predict(return_preds=False, save_preds=True)

# Display a few random samples and their predictions
img_pairs, pred_labels, ids = ds.get_samples(num_samples,
                                             split='test_with_preds',
                                             deterministic=False,
                                             as_tuple=True)
display_img_pairs_w_flows(img_pairs, pred_labels, titles=ids)
    def PWC_full(F0, F1, F2, F3, F4, B0, B1, B2, B3, B4, lvl_h, lvl_w, pwc_h, pwc_w):
        ratio_h = float(lvl_h) / float(pwc_h)
        ratio_w = float(lvl_w) / float(pwc_w)
        nn = ModelPWCNet(mode='test', options=nn_opts)
        nn.print_config()
        F0 = tf.image.resize_bilinear(F0, (pwc_h, pwc_w))
        F1 = tf.image.resize_bilinear(F1, (pwc_h, pwc_w))
        F2 = tf.image.resize_bilinear(F2, (pwc_h, pwc_w))
        F3 = tf.image.resize_bilinear(F3, (pwc_h, pwc_w))
        F4 = tf.image.resize_bilinear(F4, (pwc_h, pwc_w))
        B0 = tf.image.resize_bilinear(B0, (pwc_h, pwc_w))
        B1 = tf.image.resize_bilinear(B1, (pwc_h, pwc_w))
        B2 = tf.image.resize_bilinear(B2, (pwc_h, pwc_w))
        B3 = tf.image.resize_bilinear(B3, (pwc_h, pwc_w))
        B4 = tf.image.resize_bilinear(B4, (pwc_h, pwc_w))
        tmp_list = []
        tmp_list.append(tf.stack([F0, F1], 1))
        tmp_list.append(tf.stack([F0, F2], 1))
        tmp_list.append(tf.stack([F0, F3], 1))
        tmp_list.append(tf.stack([F0, F4], 1))
        tmp_list.append(tf.stack([F1, F0], 1))
        tmp_list.append(tf.stack([F1, F2], 1))
        tmp_list.append(tf.stack([F1, F3], 1))
        tmp_list.append(tf.stack([F1, F4], 1))
        tmp_list.append(tf.stack([F2, F0], 1))
        tmp_list.append(tf.stack([F2, F1], 1))
        tmp_list.append(tf.stack([F2, F3], 1))
        tmp_list.append(tf.stack([F2, F4], 1))
        tmp_list.append(tf.stack([F3, F0], 1))
        tmp_list.append(tf.stack([F3, F1], 1))
        tmp_list.append(tf.stack([F3, F2], 1))
        tmp_list.append(tf.stack([F3, F4], 1))
        tmp_list.append(tf.stack([F4, F0], 1))
        tmp_list.append(tf.stack([F4, F1], 1))
        tmp_list.append(tf.stack([F4, F2], 1))
        tmp_list.append(tf.stack([F4, F3], 1))
        tmp_list.append(tf.stack([B0, B1], 1))
        tmp_list.append(tf.stack([B0, B2], 1))
        tmp_list.append(tf.stack([B0, B3], 1))
        tmp_list.append(tf.stack([B0, B4], 1))
        tmp_list.append(tf.stack([B1, B0], 1))
        tmp_list.append(tf.stack([B1, B2], 1))
        tmp_list.append(tf.stack([B1, B3], 1))
        tmp_list.append(tf.stack([B1, B4], 1))
        tmp_list.append(tf.stack([B2, B0], 1))
        tmp_list.append(tf.stack([B2, B1], 1))
        tmp_list.append(tf.stack([B2, B3], 1))
        tmp_list.append(tf.stack([B2, B4], 1))
        tmp_list.append(tf.stack([B3, B0], 1))
        tmp_list.append(tf.stack([B3, B1], 1))
        tmp_list.append(tf.stack([B3, B2], 1))
        tmp_list.append(tf.stack([B3, B4], 1))
        tmp_list.append(tf.stack([B4, B0], 1))
        tmp_list.append(tf.stack([B4, B1], 1))
        tmp_list.append(tf.stack([B4, B2], 1))
        tmp_list.append(tf.stack([B4, B3], 1))

        PWC_input = tf.concat(tmp_list, 0)  # [batch_size*20, 2, H, W, 3]
        PWC_input = tf.reshape(PWC_input, [FLAGS.batch_size * 40, 2, pwc_h, pwc_w, 3])
        pred_labels, _ = nn.nn(PWC_input, reuse=tf.AUTO_REUSE)
        print(pred_labels)

        pred_labels = tf.image.resize_bilinear(pred_labels, (lvl_h, lvl_w))
        """
        0: W
        1: H
        """
        ratio_tensor = tf.expand_dims(tf.expand_dims(tf.expand_dims(tf.convert_to_tensor(np.asarray([ratio_w, ratio_h]), dtype=tf.float32), 0), 0), 0)

        FF01 = pred_labels[FLAGS.batch_size * 0:FLAGS.batch_size * 1] * ratio_tensor
        FF02 = pred_labels[FLAGS.batch_size * 1:FLAGS.batch_size * 2] * ratio_tensor
        FF03 = pred_labels[FLAGS.batch_size * 2:FLAGS.batch_size * 3] * ratio_tensor
        FF04 = pred_labels[FLAGS.batch_size * 3:FLAGS.batch_size * 4] * ratio_tensor
        FF10 = pred_labels[FLAGS.batch_size * 4:FLAGS.batch_size * 5] * ratio_tensor
        FF12 = pred_labels[FLAGS.batch_size * 5:FLAGS.batch_size * 6] * ratio_tensor
        FF13 = pred_labels[FLAGS.batch_size * 6:FLAGS.batch_size * 7] * ratio_tensor
        FF14 = pred_labels[FLAGS.batch_size * 7:FLAGS.batch_size * 8] * ratio_tensor
        FF20 = pred_labels[FLAGS.batch_size * 8:FLAGS.batch_size * 9] * ratio_tensor
        FF21 = pred_labels[FLAGS.batch_size * 9:FLAGS.batch_size * 10] * ratio_tensor
        FF23 = pred_labels[FLAGS.batch_size * 10:FLAGS.batch_size * 11] * ratio_tensor
        FF24 = pred_labels[FLAGS.batch_size * 11:FLAGS.batch_size * 12] * ratio_tensor
        FF30 = pred_labels[FLAGS.batch_size * 12:FLAGS.batch_size * 13] * ratio_tensor
        FF31 = pred_labels[FLAGS.batch_size * 13:FLAGS.batch_size * 14] * ratio_tensor
        FF32 = pred_labels[FLAGS.batch_size * 14:FLAGS.batch_size * 15] * ratio_tensor
        FF34 = pred_labels[FLAGS.batch_size * 15:FLAGS.batch_size * 16] * ratio_tensor
        FF40 = pred_labels[FLAGS.batch_size * 16:FLAGS.batch_size * 17] * ratio_tensor
        FF41 = pred_labels[FLAGS.batch_size * 17:FLAGS.batch_size * 18] * ratio_tensor
        FF42 = pred_labels[FLAGS.batch_size * 18:FLAGS.batch_size * 19] * ratio_tensor
        FF43 = pred_labels[FLAGS.batch_size * 19:FLAGS.batch_size * 20] * ratio_tensor
        FB01 = pred_labels[FLAGS.batch_size * 20:FLAGS.batch_size * 21] * ratio_tensor
        FB02 = pred_labels[FLAGS.batch_size * 21:FLAGS.batch_size * 22] * ratio_tensor
        FB03 = pred_labels[FLAGS.batch_size * 22:FLAGS.batch_size * 23] * ratio_tensor
        FB04 = pred_labels[FLAGS.batch_size * 23:FLAGS.batch_size * 24] * ratio_tensor
        FB10 = pred_labels[FLAGS.batch_size * 24:FLAGS.batch_size * 25] * ratio_tensor
        FB12 = pred_labels[FLAGS.batch_size * 25:FLAGS.batch_size * 26] * ratio_tensor
        FB13 = pred_labels[FLAGS.batch_size * 26:FLAGS.batch_size * 27] * ratio_tensor
        FB14 = pred_labels[FLAGS.batch_size * 27:FLAGS.batch_size * 28] * ratio_tensor
        FB20 = pred_labels[FLAGS.batch_size * 28:FLAGS.batch_size * 29] * ratio_tensor
        FB21 = pred_labels[FLAGS.batch_size * 29:FLAGS.batch_size * 30] * ratio_tensor
        FB23 = pred_labels[FLAGS.batch_size * 30:FLAGS.batch_size * 31] * ratio_tensor
        FB24 = pred_labels[FLAGS.batch_size * 31:FLAGS.batch_size * 32] * ratio_tensor
        FB30 = pred_labels[FLAGS.batch_size * 32:FLAGS.batch_size * 33] * ratio_tensor
        FB31 = pred_labels[FLAGS.batch_size * 33:FLAGS.batch_size * 34] * ratio_tensor
        FB32 = pred_labels[FLAGS.batch_size * 34:FLAGS.batch_size * 35] * ratio_tensor
        FB34 = pred_labels[FLAGS.batch_size * 35:FLAGS.batch_size * 36] * ratio_tensor
        FB40 = pred_labels[FLAGS.batch_size * 36:FLAGS.batch_size * 37] * ratio_tensor
        FB41 = pred_labels[FLAGS.batch_size * 37:FLAGS.batch_size * 38] * ratio_tensor
        FB42 = pred_labels[FLAGS.batch_size * 38:FLAGS.batch_size * 39] * ratio_tensor
        FB43 = pred_labels[FLAGS.batch_size * 39:FLAGS.batch_size * 40] * ratio_tensor

        return FF01, FF02, FF03, FF04, \
               FF10, FF12, FF13, FF14, \
               FF20, FF21, FF23, FF24, \
               FF30, FF31, FF32, FF34, \
               FF40, FF41, FF42, FF43, \
               FB01, FB02, FB03, FB04, \
               FB10, FB12, FB13, FB14, \
               FB20, FB21, FB23, FB24, \
               FB30, FB31, FB32, FB34, \
               FB40, FB41, FB42, FB43
示例#10
0
        output = tf.concat([x_0, x_1, x_2], -1)
        return output[:, 40:-40, 40:-40]


    down_level = 0
    pwc_h = int(np.ceil(float(CROP_PATCH_H // (2 ** down_level)) / 64.0)) * 64
    pwc_w = int(np.ceil(float(CROP_PATCH_W // (2 ** down_level)) / 64.0)) * 64
    B0_pred_0_down = tf.image.resize_bilinear(apply_gaussian_blur_image(B0_pred_0), (pwc_h, pwc_w), align_corners=True)
    B1_pred_0_down = tf.image.resize_bilinear(apply_gaussian_blur_image(B1_pred_0), (pwc_h, pwc_w), align_corners=True)
    B2_pred_0_down = tf.image.resize_bilinear(apply_gaussian_blur_image(B2_pred_0), (pwc_h, pwc_w), align_corners=True)
    B3_pred_0_down = tf.image.resize_bilinear(apply_gaussian_blur_image(B3_pred_0), (pwc_h, pwc_w), align_corners=True)
    B4_pred_0_down = tf.image.resize_bilinear(apply_gaussian_blur_image(B4_pred_0), (pwc_h, pwc_w), align_corners=True)

    ratio_h = float(CROP_PATCH_H // (2 ** down_level)) / float(pwc_h)
    ratio_w = float(CROP_PATCH_W // (2 ** down_level)) / float(pwc_w)
    nn = ModelPWCNet(mode='test', options=nn_opts)
    nn.print_config()
    tmp_list = []
    tmp_list.append(tf.stack([B2_pred_0_down, B0_pred_0_down], 1))
    tmp_list.append(tf.stack([B2_pred_0_down, B1_pred_0_down], 1))
    tmp_list.append(tf.stack([B2_pred_0_down, B3_pred_0_down], 1))
    tmp_list.append(tf.stack([B2_pred_0_down, B4_pred_0_down], 1))

    PWC_input = tf.concat(tmp_list, 0)  # [batch_size*20, 2, H, W, 3]
    PWC_input = tf.reshape(PWC_input, [FLAGS.batch_size * 4, 2, pwc_h, pwc_w, 3])
    pred_labels, _ = nn.nn(PWC_input, reuse=tf.AUTO_REUSE)
    pred_labels = tf.image.resize_bilinear(pred_labels, (RESIZED_H // (2 ** down_level), RESIZED_W // (2 ** down_level)), align_corners=True)
    """
    0: W
    1: H
    """
示例#11
0
nn_opts['batch_size'] = 1
nn_opts['gpu_devices'] = gpu_devices
nn_opts['controller'] = controller

# We're running the PWC-Net-large model in quarter-resolution mode
# That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
nn_opts['use_dense_cx'] = True
nn_opts['use_res_cx'] = True
nn_opts['pyr_lvls'] = 6
nn_opts['flow_pred_lvl'] = 2

# The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
# of 64. Hence, we need to crop the predicted flows to their original size
nn_opts['adapt_info'] = (1, 436, 1024, 2)

nn = ModelPWCNet(mode='test', options=nn_opts)
# nn.print_config()

pred_labels = nn.predict_from_img_pairs(img_pairs[0:50], batch_size=1, verbose=False)
zmf_save_flows(names[0:50], pred_labels, save_addr)
print(1)
pred_labels = nn.predict_from_img_pairs(img_pairs[50:100], batch_size=1, verbose=False)
zmf_save_flows(names[50:100], pred_labels, save_addr)
print(2)
pred_labels = nn.predict_from_img_pairs(img_pairs[100:150], batch_size=1, verbose=False)
zmf_save_flows(names[100:150], pred_labels, save_addr)
print(3)
pred_labels = nn.predict_from_img_pairs(img_pairs[150:200], batch_size=1, verbose=False)
zmf_save_flows(names[150:200], pred_labels, save_addr)
print(4)
pred_labels = nn.predict_from_img_pairs(img_pairs[200:250], batch_size=1, verbose=False)
示例#12
0
文件: demo.py 项目: dikshant2210/m2p3
nn_opts['gpu_devices'] = gpu_devices
nn_opts['controller'] = controller

# We're running the PWC-Net-large model in quarter-resolution mode
# That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
nn_opts['use_dense_cx'] = True
nn_opts['use_res_cx'] = True
nn_opts['pyr_lvls'] = 6
nn_opts['flow_pred_lvl'] = 2

# The size of the images in this dataset are not multiples of 64, while the model generates flows padded to multiples
# of 64. Hence, we need to crop the predicted flows to their original size
nn_opts['adapt_info'] = (1, 436, 1024, 2)

# Instantiate the model in inference mode and display the model configuration
nn = ModelPWCNet(mode='test', options=nn_opts)


#MASK_RCNN SETTINGS
class InferenceConfig(coco.CocoConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1


def main():

    # Definition of the parameters of DEEP_SORT
    max_cosine_distance = 0.3
    nn_budget = None
示例#13
0
nn_opts['verbose'] = True
nn_opts['ckpt_path'] = ckpt_path
nn_opts[
    'batch_size'] = 1  # Setting this to 1 leads to more accurate evaluations of the processing time
nn_opts['use_tf_data'] = False  # Don't use tf.data reader for this simple task
nn_opts['gpu_devices'] = gpu_devices
nn_opts['controller'] = controller  # Evaluate on CPU or GPU?

# We're evaluating the PWC-Net-small model in quarter-resolution mode
# That is, with a 6 level pyramid, and upsampling of level 2 by 4 in each dimension as the final flow prediction
nn_opts['use_dense_cx'] = False
nn_opts['use_res_cx'] = False
nn_opts['pyr_lvls'] = 6
nn_opts['flow_pred_lvl'] = 2

nn = ModelPWCNet(mode='test', options=nn_opts)
nn.print_config()

import vision_params
import cv2
import os
import numpy as np
import kociemba
from draw import *
from rotate import *
from recover import *
from tools import *
from collections import Counter


def grab_colors():