def log_training_results(trainer): evaluator.run(train_loader) metrics = evaluator.state.metrics timestamp = get_readable_time() print(timestamp + " Training set Results - Epoch: {} Avg mae: {:.2f} Avg mse: {:.2f} Avg loss: {:.2f}" .format(trainer.state.epoch, metrics['mae'], metrics['mse'], metrics['loss'])) experiment.log_metric("epoch", trainer.state.epoch) experiment.log_metric("train_mae", metrics['mae']) experiment.log_metric("train_mse", metrics['mse']) experiment.log_metric("train_loss", metrics['loss']) experiment.log_metric("lr", get_lr(optimizer))
def log_training_results(trainer): experiment.log_metric("epoch", trainer.state.epoch) if not args.skip_train_eval: evaluator_train.run(train_loader_eval) metrics = evaluator_train.state.metrics timestamp = get_readable_time() print( timestamp + " Training set Results - Epoch: {} Avg mae: {:.2f} Avg mse: {:.2f} Avg loss: {:.2f}" .format(trainer.state.epoch, metrics['mae'], metrics['mse'], 0) ) # experiment.log_metric("epoch", trainer.state.epoch) experiment.log_metric("train_mae", metrics['mae']) experiment.log_metric("train_mse", metrics['mse']) experiment.log_metric("lr", get_lr(optimizer)) print("batch_timer ", batch_timer.value()) print("train_timer ", train_timer.value()) experiment.log_metric("batch_timer", batch_timer.value()) experiment.log_metric("train_timer", train_timer.value())