示例#1
0
            logger.info("Saved model history: {}".format(model_history_name))

        except Exception as exc:
            logger.exception(exc)

        
        # Reset model and history

        model = None
        history = None

    logger.info("FINISHED running simulations")

#################################################
# Main functions for each hardware configuration
#################################################

def main():
    """ Main function to run training and prediction. """

    mod = functional_sony()
    run_simulation(mod)

#######################################################
# Running train_model script, Jupyter Notebook config
#######################################################

enable_cloud_log('INFO')
main()

示例#2
0
at each convolutional layer, for example.
"""
import logging
from urllib.parse import urljoin

from tensorflow.train import AdamOptimizer
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.optimizers import Adam

from model01 import simple_sony, full_sony
from model_utils import enable_cloud_log, plot_imgpair, plot_loss
from custom_loss import mean_absolute_error

logger = logging.getLogger(__name__)
enable_cloud_log(level='DEBUG')

# Create checkpoint callback
checkpoint_path = 'checkpoints/cp.ckpt'
cp_callback = ModelCheckpoint(checkpoint_path,
                              save_weights_only=True,
                              verbose=1)

# Dataset of 50,000 32x32 color training images,
# labeled over 10 categories, and 10,000 test images.

(X_train, y_train), (X_test, y_test) = cifar10.load_data()

m = 64

#Y_train = X_train
示例#3
0
    ]

    for imgtup in imgman:

        # Define model    
        model = model02()

        imgname, imgfunc = imgtup
        logger.info("Processing: {}".format(imgtup[0]))
        model = fit_model(X_train, Y_test, model, checkpoint_dir, imgtup)
        Y_pred = model_predict(model, X_test, imgtup)
        review_image_output(X_test, Y_pred, Y_test, imgtup, every=10)

        model = None

    logger.info("FINISHED running simulations")

if __name__ == "__main__":

    enable_cloud_log('DEBUG')
    
    fcov = "simulation_cov.pkl"
    fmean = "simulation_mean.pkl"

    COVM = read_pickle(fcov)
    MEANM = read_pickle(fmean)


    run_simulation(fcov, fmean)