def check_model_list(model_list, datasets): opts = default_opt_creator() for dataset_str in datasets: for model in model_list: set_dataset(opts, dataset=dataset_str) set_default_opts_based_on_model_dataset(opts) set_model_string(opts, model) get_model_from_db(model, opts)
def check_model_list(model_list, datasets): opts = default_opt_creator() for dataset_str in datasets: for model in model_list: set_dataset(opts, dataset=dataset_str) set_default_opts_based_on_model_dataset(opts) set_model_string(opts, model) model_dict= get_model_from_db(model, opts) model = model_dict['model'] model.summary()
print(100 * '*', 3 * '\n', model_str, '\n', dataset_str, 3 * '\n', 100 * '*') opts = default_opt_creator() opts['experiment_name'] = experiment_name opts['experiment_tag'] = experiment_name + '/' + dataset_str + '/' + weight_model_name + 'loaded_to_' + model_str set_dataset(opts, dataset=dataset_str) opts = set_model_string(opts, model_str) opts = set_default_opts_based_on_model_dataset(opts) input_shape = opts['training_opts']['dataset']['input_shape'] nb_class = opts['training_opts']['dataset']['nb_classes'] # opts = set_expand_rate(opts, param_expand_sel) # optimizer = optimizers.Nadam() optimizer = optimizers.SGD(lr=opts['optimizer_opts']['lr'], momentum=opts['optimizer_opts']['momentum'], decay=opts['optimizer_opts']['decay'], nesterov=opts['optimizer_opts']['nestrov']) # optimizer = optimizers.Adadelta() """ MODEL PREPARE """ model = get_model_from_db(model_str, opts) weight_model = get_model_from_db(weight_model_name, opts) model_modification_utils.load_weights_by_block_index_list(model, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], os.path.join( global_constant_var.get_experimentcase_abs_path(weight_model_experiment_name, dataset_str, weight_model_name), 'checkpoint'), model_constructor_utils.CONVSH_NAME) model_modification_utils.load_weights_by_block_index_list(weight_model, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], os.path.join( global_constant_var.get_experimentcase_abs_path(weight_model_experiment_name, dataset_str, weight_model_name), 'checkpoint'), model_constructor_utils.CONVSH_NAME) model.compile(loss=opt_utils.get_loss(opts), optimizer=optimizer, metrics=opt_utils.get_metrics(opts)) weight_model.compile(loss=opt_utils.get_loss(opts), optimizer=optimizer, metrics=opt_utils.get_metrics(opts)) method_names = find_key_value_to_str_recursive(opts, '', {'param_expand'}) opts['experiment_name'] = method_names # LOAD DATA (data_train, label_train), (data_test, label_test) = load_data(dataset_str, opts) data_train, data_test = preprocess_data_phase(opts, data_train, data_test) data_gen = data_augmentation_phase(opts)
opts = default_opt_creator() opts['experiment_name'] = experiment_name set_dataset(opts, dataset=dataset_str) opts = set_model_string(opts, model_str) opts = set_default_opts_based_on_model_dataset(opts) input_shape = opts['training_opts']['dataset']['input_shape'] nb_class = opts['training_opts']['dataset']['nb_classes'] # opts = set_expand_rate(opts, param_expand_sel) # optimizer = optimizers.Nadam() optimizer = optimizers.SGD(lr=opts['optimizer_opts']['lr'], momentum=opts['optimizer_opts']['momentum'], decay=opts['optimizer_opts']['decay'], nesterov=opts['optimizer_opts']['nestrov']) # optimizer = optimizers.Adadelta() """ MODEL PREPARE """ model_dict = get_model_from_db(model_str, opts) model = model_dict['model'] model_total_params = (model.count_params() // 100000) / 10 if (not total_params == 0) and (not model_total_params== total_params): set_expand_rate(opts, np.sqrt(total_params/model_total_params)*get_expand_rate(opts)); print('Expand Rate Changed') model_dict = get_model_from_db(model_str, opts) model = model_dict['model'] if total_params==0: total_params = model_total_params; opts['experiment_tag'] = experiment_name + '/' + dataset_str + '/' + model_str + '/' + str((model.count_params()//100000)/10)+'M' # out_tensor_list = model_dict['out'] # output_num = len(out_tensor_list) model.summary() # model_modification_utils.load_weights_by_block_index_list(model, [1, 2, 3, 4, 5, 6, 7, 8, 9], os.path.join( # global_constant_var.get_experimentcase_abs_path(experiment_name, dataset_str, 'nin_tree_berp_1'), 'checkpoint'),
'experiment_tag'] = experiment_name + '/' + dataset_str + '/' + model_str set_dataset(opts, dataset=dataset_str) opts = set_model_string(opts, model_str) opts = set_default_opts_based_on_model_dataset(opts) input_shape = opts['training_opts']['dataset']['input_shape'] nb_class = opts['training_opts']['dataset']['nb_classes'] # opts = set_expand_rate(opts, param_expand_sel) # optimizer = optimizers.Nadam() optimizer = optimizers.SGD( lr=opts['optimizer_opts']['lr'], momentum=opts['optimizer_opts']['momentum'], decay=opts['optimizer_opts']['decay'], nesterov=opts['optimizer_opts']['nestrov']) # optimizer = optimizers.Adadelta() """ MODEL PREPARE """ model = get_model_from_db(model_str, opts) model.summary() # model_modification_utils.load_weights_by_block_index_list(model, [1, 2, 3, 4, 5, 6, 7, 8, 9], os.path.join( # global_constant_var.get_experimentcase_abs_path(experiment_name, dataset_str, 'nin_tree_berp_1'), 'checkpoint'), # model_constructor_utils.CONVSH_NAME) model.compile(loss=opt_utils.get_loss(opts), optimizer=optimizer, metrics=opt_utils.get_metrics(opts)) method_names = find_key_value_to_str_recursive( opts, '', {'param_expand'}) opts['experiment_name'] = method_names # LOAD DATA (data_train, label_train), (data_test, label_test) = load_data(dataset_str, opts) data_train, data_test = preprocess_data_phase(