示例#1
0
def prayer(configfile, nprays=0, savefile=None):
  """
  Implement prayer bead method to estimate parameter uncertainties.

  Parameters:
  -----------
  params: 1D-ndarray 
    Comment me, and all my friends.
  inonprior: 1D-ndarray
  stepsize: 1D-ndarray
  fit: a fits instance
  ncores: integer

  Notes:
  ------
  Believing in a prayer bead is a mere act of faith, we are scientists
  for god's sake!

  Modification History:
  ---------------------
  2012-10-29  patricio  Initial implementation.  [email protected]
  2013-09-03  patricio  Added documentation.  
  2014-05-19  patricio  Modified to work with MC3.
  """

  config = ConfigParser.SafeConfigParser()
  config.read([configfile])
  cfgsec = "MCMC" 

  data = mu.parray(config.get(cfgsec, 'data'))
  if isinstance(data[0], str):
    array = mu.readbin(data[0])
    data = array[0]
    if len(array) == 2:
      uncert = array[1]
    else:
      uncert = mu.parray(config.get(cfgsec, 'uncert'))

  params    = mu.parray(config.get(cfgsec, 'params'))
  if isinstance(params[0], str):
    array = mu.read2array(params[0])
    ninfo, nparams = np.shape(array)
    if ninfo == 7:                 # The priors
      prior    = array[4]
      priorlow = array[5]
      priorup  = array[6]
    else:
      try:
        prior     = mu.parray(config.get(cfgsec, 'prior'))
        priorlow  = mu.parray(config.get(cfgsec, 'priorlow'))
        priorup   = mu.parray(config.get(cfgsec, 'priorup'))
      except:
        prior   = np.zeros(nparams)  # Empty arrays
        priorup = priorlow = np.array([])
        iprior  = np.array([], int)

    if ninfo >= 4:                 # The stepsize
      stepsize = array[3]
    else:
      stepsize  = mu.parray(config.get(cfgsec, 'stepsize'))

    if ninfo >= 2:                 # The boundaries
      pmin     = array[1]
      pmax     = array[2]
    else:
      pmin      = mu.parray(config.get(cfgsec, 'pmin'))
      pmax      = mu.parray(config.get(cfgsec, 'pmax'))
    params = array[0]              # The initial guess

  indparams = mu.parray(config.get(cfgsec, 'indparams'))
  if indparams != [] and isinstance(indparams[0], str):
    indparams = mu.readbin(indparams[0])

  # Number of fitting parameters:
  nfree = np.sum(stepsize > 0)
  ifree  = np.where(stepsize > 0)[0] 
  iprior = np.where(priorlow > 0)[0] 

  # Get modeling function:
  func   = mu.parray(config.get(cfgsec, 'func'))
  if type(func) in [list, tuple, np.ndarray]:
    if len(func) == 3:
      sys.path.append(func[2])
    exec('from %s import %s as func'%(func[1], func[0]))
  elif not callable(func):
    return

  # Number of iterations:
  if nprays == 0:
    nprays = ndata
    shifts = np.arange(1, ndata)
  else:
    shifts = np.random.randint(0, ndata, nprays-1)

  # Allocate space for results:
  allfits = np.zeros((nprays, nfree))

  # Fit model:
  fitargs = (params, func, data, uncert, indparams, stepsize, pmin, pmax,
             (prior-params)[iprior], priorlow[iprior], priorup[iprior])
  chisq, dummy = mf.modelfit(params[ifree], args=fitargs)
  # Evaluate best model:
  fargs = [params] + indparams
  bestmodel = func(*fargs)
  chifactor = np.sqrt(chisq/(ndata-nfree))
  # Get residuals:
  residuals = data - bestmodel
  sigma     = np.copy(uncert*chifactor)

  allfits[0] = params[ifree]

  for i in np.arange(nprays-1):
    # Permuted data:
    pbdata = np.copy(bestmodel + np.roll(residuals, shifts[i]))
    # Permuted weights:
    pbunc  = np.roll(sigma, shifts[i])
    # Fitting parameters:
    pbfit = np.copy(params)[ifree]
    # Fit model:
    fitargs = (params, func, pbdata, pbunc, indparams, stepsize, pmin, pmax,
             (prior-params)[iprior], priorlow[iprior], priorup[iprior])
    chisq, dummy = mf.modelfit(pbfit, args=fitargs)
    allfits[i+1] = pbfit

  if savefile is not None:
    pbfile = open(savefile, "w")
    pbfile.write("Prayer-bead uncertainties:\n")
    pbunc = np.std(allfits,0)
    for j in np.arange(nfree):
      pbfile.write("%s  "%str(pbunc[j]))
    pbfile.close()

  return allfits, residuals
示例#2
0
def mcmc(data,         uncert=None,      func=None,     indparams=[],
         params=None,  pmin=None,        pmax=None,     stepsize=None,
         prior=None,   priorlow=None,    priorup=None,
         numit=10,     nchains=10,       walk='demc',   wlike=False,
         leastsq=True, chisqscale=False, grtest=True,   burnin=0,
         thinning=1,   plots=False,      savefile=None, savemodel=None,
         comm=None,    resume=False,     log=None,      rms=False):
  """
  This beautiful piece of code runs a Markov-chain Monte Carlo algoritm.

  Parameters:
  -----------
  data: 1D ndarray
     Dependent data fitted by func.
  uncert: 1D ndarray
     Uncertainty of data.
  func: callable or string-iterable
     The callable function that models data as:
        model = func(params, *indparams)
     Or an iterable (list, tuple, or ndarray) of 3 strings:
        (funcname, modulename, path)
     that specify the function name, function module, and module path.
     If the module is already in the python-path scope, path can be omitted.
  indparams: tuple
     Additional arguments required by func.
  params: 1D or 2D ndarray
     Set of initial fitting parameters for func.  If 2D, of shape
     (nparams, nchains), it is assumed that it is one set for each chain.
  pmin: 1D ndarray
     Lower boundaries of the posteriors.
  pmax: 1D ndarray
     Upper boundaries of the posteriors.
  stepsize: 1D ndarray
     Proposal jump scale.  If a values is 0, keep the parameter fixed.
     Negative values indicate a shared parameter (See Note 1).
  prior: 1D ndarray
     Parameter prior distribution means (See Note 2).
  priorlow: 1D ndarray
     Lower prior uncertainty values (See Note 2).
  priorup: 1D ndarray
     Upper prior uncertainty values (See Note 2).
  numit: Scalar
     Total number of iterations.
  nchains: Scalar
     Number of simultaneous chains to run.
  walk: String
     Random walk algorithm:
     - 'mrw':  Metropolis random walk.
     - 'demc': Differential Evolution Markov chain.
  wlike: Boolean
     If True, calculate the likelihood in a wavelet-base.  This requires
     three additional parameters (See Note 3).
  leastsq: Boolean
     Perform a least-square minimization before the MCMC run.
  chisqscale: Boolean
     Scale the data uncertainties such that the reduced chi-squared = 1.
  grtest: Boolean
     Run Gelman & Rubin test.
  burnin: Scalar
     Burned-in (discarded) number of iterations at the beginning
     of the chains.
  thinning: Integer
     Thinning factor of the chains (use every thinning-th iteration) used
     in the GR test and plots.
  plots: Boolean
     If True plot parameter traces, pairwise-posteriors, and posterior
     histograms.
  savefile: String
     If not None, filename to store allparams (with np.save).
  savemodel: String
     If not None, filename to store the values of the evaluated function
     (with np.save).
  comm: MPI Communicator
     A communicator object to transfer data through MPI.
  resume: Boolean
     If True resume a previous run.
  log: FILE pointer
     File object to write log into.

  Returns:
  --------
  allparams: 2D ndarray
     An array of shape (nfree, numit-nchains*burnin) with the MCMC
     posterior distribution of the fitting parameters.
  bestp: 1D ndarray
     Array of the best fitting parameters.

  Notes:
  ------
  1.- To set one parameter equal to another, set its stepsize to the
      negative index in params (Starting the count from 1); e.g.: to set
      the second parameter equal to the first one, do: stepsize[1] = -1.
  2.- If any of the fitting parameters has a prior estimate, e.g.,
        param[i] = p0 +up/-low,
      with up and low the 1sigma uncertainties.  This information can be
      considered in the MCMC run by setting:
      prior[i]    = p0
      priorup[i]  = up
      priorlow[i] = low
      All three: prior, priorup, and priorlow must be set and, furthermore,
      priorup and priorlow must be > 0 to be considered as prior.
  3.- FINDME WAVELET LIKELIHOOD

  Examples:
  ---------
  >>> # See examples: https://github.com/pcubillos/MCcubed/tree/master/examples

  Developers:
  -----------
  Kevin Stevenson    UCF  [email protected]
  Patricio Cubillos  UCF  [email protected]

  Modification History:
  ---------------------
    2008-05-02  kevin     Initial implementation
    2008-06-21  kevin     Finished updating
    2009-11-01  kevin     Updated for multi events:
    2010-06-09  kevin     Updated for ipspline, nnint & bilinint
    2011-07-06  kevin     Updated for Gelman-Rubin statistic
    2011-07-22  kevin     Added principal component analysis
    2011-10-11  kevin     Added priors
    2012-09-03  patricio  Added Differential Evolution MC. Documented.
    2013-01-31  patricio  Modified for general purposes.
    2013-02-21  patricio  Added support distribution for DEMC.
    2014-03-31  patricio  Modified to be completely agnostic of the
                          fitting function, updated documentation.
    2014-04-17  patricio  Revamped use of 'func': no longer requires a
                          wrapper.  Alternatively, can take a string list with
                          the function, module, and path names.
    2014-04-19  patricio  Added savefile, thinning, plots, and mpi arguments.
    2014-05-04  patricio  Added Summary print out.
    2014-05-09  patricio  Added Wavelet-likelihood calculation.
    2014-05-09  patricio  Changed figure types from pdf to png, because it's
                          much faster.
    2014-05-26  patricio  Changed mpi bool argument by comm.  Re-engineered
                          MPI communications to make direct calls to func.
    2014-06-09  patricio  Fixed glitch with leastsq+informative priors.
    2014-10-17  patricio  Added savemodel argument.
    2014-10-23  patricio  Added support for func hack.
    2015-02-04  patricio  Added resume argument.
    2015-05-15  patricio  Added log argument.
  """

  # Import the model function:
  if type(func) in [list, tuple, np.ndarray]:
    if func[0] != 'hack':
      if len(func) == 3:
        sys.path.append(func[2])
      exec('from %s import %s as func'%(func[1], func[0]))
  elif not callable(func):
    mu.error("'func' must be either, a callable, or an iterable (list, "
             "tuple, or ndarray) of strings with the model function, file, "
             "and path names.", log)

  if np.ndim(params) == 1:  # Force it to be 2D (one for each chain)
    params  = np.atleast_2d(params)
  nparams = len(params[0])  # Number of model params
  ndata   = len(data)       # Number of data values
  # Set default uncertainties:
  if uncert is None:
    uncert = np.ones(ndata)
  # Set default boundaries:
  if pmin is None:
    pmin = np.zeros(nparams) - np.inf
  if pmax is None:
    pmax = np.zeros(nparams) + np.inf
  # Set default stepsize:
  if stepsize is None:
    stepsize = 0.1 * np.abs(params[0])
  # Set prior parameter indices:
  if (prior is None) or (priorup is None) or (priorlow is None):
    prior   = priorup = priorlow = np.zeros(nparams)  # Zero arrays
  iprior = np.where(priorlow != 0)[0]
  ilog   = np.where(priorlow <  0)[0]

  nfree    = np.sum(stepsize > 0)        # Number of free parameters
  chainlen = int(np.ceil(numit/nchains)) # Number of iterations per chain
  ifree    = np.where(stepsize > 0)[0]   # Free   parameter indices
  ishare   = np.where(stepsize < 0)[0]   # Shared parameter indices
  # Number of model parameters (excluding wavelet parameters):
  if wlike:
    mpars  = nparams - 3
  else:
    mpars  = nparams

  # Intermediate steps to run GR test and print progress report:
  intsteps   = chainlen / 10

  # Allocate arrays with variables:
  numaccept  = np.zeros(nchains)          # Number of accepted proposal jumps
  outbounds  = np.zeros((nchains, nfree), np.int)   # Out of bounds proposals
  allparams  = np.zeros((nchains, nfree, chainlen)) # Parameter's record
  if savemodel is not None:
    allmodel = np.zeros((nchains, ndata, chainlen)) # Fit model

  if resume:
    oldparams = np.load(savefile)
    nold = np.shape(oldparams)[2] # Number of old-run iterations
    allparams = np.dstack((oldparams, allparams))
    if savemodel is not None:
      allmodel  = np.dstack((np.load(savemodel), allmodel))
    # Set params to the last-iteration state of the previous run:
    params = np.repeat(params, nchains, 0)
    params[:,ifree] = oldparams[:,:,-1]
  else:
    nold = 0

  # Set MPI flag:
  mpi = comm is not None

  if mpi:
    from mpi4py import MPI
    # Send sizes info to other processes:
    array1 = np.asarray([mpars, chainlen], np.int)
    mu.comm_bcast(comm, array1, MPI.INT)

  # DEMC parameters:
  gamma  = 2.4 / np.sqrt(2*nfree)
  gamma2 = 0.001  # Jump scale factor of support distribution

  # Least-squares minimization:
  if leastsq:
    fitargs = (params[0], func, data, uncert, indparams, stepsize, pmin, pmax,
               prior, priorlow, priorup)
    fitchisq, dummy = mf.modelfit(params[0,ifree], args=fitargs)
    fitbestp = np.copy(params[0, ifree])
    mu.msg(1, "Least-squares best-fitting parameters: \n{:s}\n\n".
              format(str(fitbestp)), log)

  # Replicate to make one set for each chain: (nchains, nparams):
  if np.shape(params)[0] != nchains:
    params = np.repeat(params, nchains, 0)
    # Start chains with an initial jump:
    for p in ifree:
      # For each free param, use a normal distribution: 
      params[1:, p] = np.random.normal(params[0, p], stepsize[p], nchains-1)
      # Stay within pmin and pmax boundaries:
      params[np.where(params[:, p] < pmin[p]), p] = pmin[p]
      params[np.where(params[:, p] > pmax[p]), p] = pmax[p]
  
  # Update shared parameters:
  for s in ishare:
    params[:, s] = params[:, -int(stepsize[s])-1]

  # Calculate chi-squared for model using current params:
  models = np.zeros((nchains, ndata))
  if mpi:
    # Scatter (send) parameters to func:
    mu.comm_scatter(comm, params[:,0:mpars].flatten(), MPI.DOUBLE)
    # Gather (receive) evaluated models:
    mpimodels = np.zeros(nchains*ndata, np.double)
    mu.comm_gather(comm, mpimodels)
    # Store them in models variable:
    models = np.reshape(mpimodels, (nchains, ndata))
  else:
    for c in np.arange(nchains):
      fargs = [params[c, 0:mpars]] + indparams  # List of function's arguments
      models[c] = func(*fargs)

  # Calculate chi-squared for each chain:
  currchisq = np.zeros(nchains)
  c2        = np.zeros(nchains)  # No-Jeffrey's chisq
  for c in np.arange(nchains):
    if wlike: # Wavelet-based likelihood (chi-squared, actually)
      currchisq[c], c2[c] = dwt.wlikelihood(params[c, mpars:], models[c]-data,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
    else:
      currchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])

  # Scale data-uncertainties such that reduced chisq = 1:
  if chisqscale:
    chifactor = np.sqrt(np.amin(currchisq)/(ndata-nfree))
    uncert *= chifactor
    # Re-calculate chisq with the new uncertainties:
    for c in np.arange(nchains):
      if wlike: # Wavelet-based likelihood (chi-squared, actually)
        currchisq[c], c2[c] = dwt.wlikelihood(params[c,mpars:], models[c]-data,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
      else:
        currchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
    if leastsq:
      fitchisq = currchisq[0]

  # Get lowest chi-square and best fitting parameters:
  bestchisq = np.amin(c2)
  bestp     = np.copy(params[np.argmin(c2)])
  bestmodel = np.copy(models[np.argmin(c2)])

  if savemodel is not None:
    allmodel[:,:,0] = models

  # Set up the random walks:
  if   walk == "mrw":
    # Generate proposal jumps from Normal Distribution for MRW:
    mstep   = np.random.normal(0, stepsize[ifree], (chainlen, nchains, nfree))
  elif walk == "demc":
    # Support random distribution:
    support = np.random.normal(0, stepsize[ifree], (chainlen, nchains, nfree))
    # Generate indices for the chains such r[c] != c:
    r1 = np.random.randint(0, nchains-1, (nchains, chainlen))
    r2 = np.random.randint(0, nchains-1, (nchains, chainlen))
    for c in np.arange(nchains):
      r1[c][np.where(r1[c]==c)] = nchains-1
      r2[c][np.where(r2[c]==c)] = nchains-1

  # Uniform random distribution for the Metropolis acceptance rule:
  unif = np.random.uniform(0, 1, (chainlen, nchains))

  # Proposed iteration parameters and chi-square (per chain):
  nextp     = np.copy(params)    # Proposed parameters
  nextchisq = np.zeros(nchains)  # Chi square of nextp 

  # Start loop:
  mu.msg(1, "Start MCMC chains  ({:s})".format(time.ctime()), log)
  for i in np.arange(chainlen):
    # Proposal jump:
    if   walk == "mrw":
      jump = mstep[i]
    elif walk == "demc":
      jump = (gamma  * (params[r1[:,i]]-params[r2[:,i]])[:,ifree] +
              gamma2 * support[i]                                 )
    # Propose next point:
    nextp[:,ifree] = params[:,ifree] + jump

    # Check it's within boundaries: 
    outpars = np.asarray(((nextp < pmin) | (nextp > pmax))[:,ifree])
    outflag  = np.any(outpars, axis=1)
    outbounds += ((nextp < pmin) | (nextp > pmax))[:,ifree]
    for p in ifree:
      nextp[np.where(nextp[:, p] < pmin[p]), p] = pmin[p]
      nextp[np.where(nextp[:, p] > pmax[p]), p] = pmax[p]

    # Update shared parameters:
    for s in ishare:
      nextp[:, s] = nextp[:, -int(stepsize[s])-1]

    # Evaluate the models for the proposed parameters:
    if mpi:
      mu.comm_scatter(comm, nextp[:,0:mpars].flatten(), MPI.DOUBLE)
      mu.comm_gather(comm, mpimodels)
      models = np.reshape(mpimodels, (nchains, ndata))
    else:
      for c in np.where(~outflag)[0]:
        fargs = [nextp[c, 0:mpars]] + indparams  # List of function's arguments
        models[c] = func(*fargs)

    # Calculate chisq:
    for c in np.where(~outflag)[0]:
      if wlike: # Wavelet-based likelihood (chi-squared, actually)
        nextchisq[c], c2[c] = dwt.wlikelihood(nextp[c,mpars:], models[c]-data,
                 (nextp[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
      else:
        nextchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (nextp[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])

    # Reject out-of-bound jumps:
    nextchisq[np.where(outflag)] = np.inf
    # Evaluate which steps are accepted and update values:
    accept = np.exp(0.5 * (currchisq - nextchisq))
    accepted = accept >= unif[i]
    if i >= burnin:
      numaccept += accepted
    # Update params and chi square:
    params   [accepted] = nextp    [accepted]
    currchisq[accepted] = nextchisq[accepted]

    # Check lowest chi-square:
    if np.amin(c2) < bestchisq:
      bestp     = np.copy(params[np.argmin(c2)])
      bestmodel = np.copy(models[np.argmin(c2)])
      bestchisq = np.amin(c2)

    # Store current iteration values:
    allparams[:,:,i+nold] = params[:, ifree]
    if savemodel is not None:
      models[~accepted] = allmodel[~accepted,:,i+nold-1]
      allmodel[:,:,i+nold] = models
  
    # Print intermediate info:
    if ((i+1) % intsteps == 0) and (i > 0):
      mu.progressbar((i+1.0)/chainlen, log)
      mu.msg(1, "Out-of-bound Trials:\n {:s}".
                 format(np.sum(outbounds, axis=0)), log)
      mu.msg(1, "Best Parameters:   (chisq={:.4f})\n{:s}".
                 format(bestchisq, str(bestp)), log)

      # Gelman-Rubin statistic:
      if grtest and (i+nold) > burnin:
        psrf = gr.convergetest(allparams[:, :, burnin:i+nold+1:thinning])
        mu.msg(1, "Gelman-Rubin statistic for free parameters:\n{:s}".
                  format(psrf), log)
        if np.all(psrf < 1.01):
          mu.msg(1, "All parameters have converged to within 1% of unity.", log)
      # Save current results:
      if savefile is not None:
        np.save(savefile, allparams[:,:,0:i+nold])
      if savemodel is not None:
        np.save(savemodel, allmodel[:,:,0:i+nold])

  # Stack together the chains:
  allstack = allparams[0, :, burnin:]
  for c in np.arange(1, nchains):
    allstack = np.hstack((allstack, allparams[c, :, burnin:]))
  # And the models:
  if savemodel is not None:
    modelstack = allmodel[0,:,burnin:]
    for c in np.arange(1, nchains):
      modelstack = np.hstack((modelstack, allmodel[c, :, burnin:]))

  # Print out Summary:
  mu.msg(1, "\nFin, MCMC Summary:\n------------------", log)

  nsample   = (chainlen-burnin)*nchains # This sample
  ntotal    = (nold+chainlen-burnin)*nchains
  BIC       = bestchisq + nfree*np.log(ndata)
  redchisq  = bestchisq/(ndata-nfree)
  sdr       = np.std(bestmodel-data)

  fmtlen = len(str(ntotal))
  mu.msg(1, "Burned in iterations per chain: {:{}d}".
             format(burnin,   fmtlen), log, 1)
  mu.msg(1, "Number of iterations per chain: {:{}d}".
             format(chainlen, fmtlen), log, 1)
  mu.msg(1, "MCMC sample size:               {:{}d}".
             format(nsample,  fmtlen), log, 1)
  mu.msg(resume, "Total MCMC sample size:         {:{}d}".
             format(ntotal, fmtlen), log, 1)
  mu.msg(1, "Acceptance rate:   {:.2f}%\n ".
             format(np.sum(numaccept)*100.0/nsample), log, 1)

  meanp   = np.mean(allstack, axis=1) # Parameters mean
  uncertp = np.std(allstack,  axis=1) # Parameter standard deviation
  mu.msg(1, "Best-fit params    Uncertainties   Signal/Noise       Sample "
            "Mean", log, 1)
  for i in np.arange(nfree):
    mu.msg(1, "{: 15.7e}  {: 15.7e}   {:12.2f}   {: 15.7e}".
               format(bestp[ifree][i], uncertp[i],
                      np.abs(bestp[ifree][i])/uncertp[i], meanp[i]), log, 1)

  if leastsq and np.any(np.abs((bestp[ifree]-fitbestp)/fitbestp) > 1e-08):
    np.set_printoptions(precision=8)
    mu.warning("MCMC found a better fit than the minimizer:\n"
               " MCMC best-fitting parameters:       (chisq={:.8g})\n  {:s}\n"
               " Minimizer best-fitting parameters:  (chisq={:.8g})\n"
               "  {:s}".format(bestchisq, str(bestp[ifree]), 
                               fitchisq,  str(fitbestp)), log)

  fmtl = len("%.4f"%BIC)  # Length of string formatting
  mu.msg(1, " ", log)
  if chisqscale:
    mu.msg(1, "sqrt(reduced chi-squared) factor: {:{}.4f}".
               format(chifactor, fmtl), log, 1)
  mu.msg(1,   "Best-parameter's chi-squared:     {:{}.4f}".
               format(bestchisq, fmtl), log, 1)
  mu.msg(1,   "Bayesian Information Criterion:   {:{}.4f}".
               format(BIC,       fmtl), log, 1)
  mu.msg(1,   "Reduced chi-squared:              {:{}.4f}".
               format(redchisq,  fmtl), log, 1)
  mu.msg(1,   "Standard deviation of residuals:  {:.6g}\n".format(sdr), log, 1)


  if rms:
    rms, rmse, stderr, bs = ta.binrms(bestmodel-data)

  if plots:
    print("Plotting figures ...")
    # Extract filename from savefile:
    if savefile is not None:
      if savefile.rfind(".") == -1:
        fname = savefile[savefile.rfind("/")+1:] # Cut out file extention.
      else:
        fname = savefile[savefile.rfind("/")+1:savefile.rfind(".")]
    else:
      fname = "MCMC"
    # Trace plot:
    mp.trace(allstack,     thinning=thinning, savefile=fname+"_trace.png",
             sep=np.size(allstack[0])/nchains)
    # Pairwise posteriors:
    mp.pairwise(allstack,  thinning=thinning, savefile=fname+"_pairwise.png")
    # Histograms:
    mp.histogram(allstack, thinning=thinning, savefile=fname+"_posterior.png")
    # RMS vs bin size:
    if rms:
      mp.RMS(bs, rms, stderr, rmse, binstep=len(bs)/500+1,
                                              savefile=fname+"_RMS.png")
    if indparams != [] and np.size(indparams[0]) == ndata:
      mp.modelfit(data, uncert, indparams[0], bestmodel,
                                              savefile=fname+"_model.png")

  # Save definitive results:
  if savefile is not None:
    np.save(savefile,  allparams)
  if savemodel is not None:
    np.save(savemodel, allmodel)

  return allstack, bestp
示例#3
0
def mcmc(data,             uncert=None,   func=None,     indparams=[],
         params=None,      pmin=None,     pmax=None,     stepsize=None,
         prior=None,       priorlow=None, priorup=None,  numit=10,
         nchains=10,       walk='demc',   wlike=False,   leastsq=True,
         chisqscale=False, grtest=True,   grexit=False,  burnin=0,
         thinning=1,       plots=False,   savefile=None, savemodel=None,
         comm=None,        resume=False,  log=None,      rms=False):
  """
  This beautiful piece of code runs a Markov-chain Monte Carlo algoritm.

  Parameters
  ----------
  data: 1D ndarray
     Dependent data fitted by func.
  uncert: 1D ndarray
     Uncertainty of data.
  func: callable or string-iterable
     The callable function that models data as:
        model = func(params, *indparams)
     Or an iterable (list, tuple, or ndarray) of 3 strings:
        (funcname, modulename, path)
     that specify the function name, function module, and module path.
     If the module is already in the python-path scope, path can be omitted.
  indparams: tuple
     Additional arguments required by func.
  params: 1D or 2D ndarray
     Set of initial fitting parameters for func.  If 2D, of shape
     (nparams, nchains), it is assumed that it is one set for each chain.
  pmin: 1D ndarray
     Lower boundaries of the posteriors.
  pmax: 1D ndarray
     Upper boundaries of the posteriors.
  stepsize: 1D ndarray
     Proposal jump scale.  If a values is 0, keep the parameter fixed.
     Negative values indicate a shared parameter (See Note 1).
  prior: 1D ndarray
     Parameter prior distribution means (See Note 2).
  priorlow: 1D ndarray
     Lower prior uncertainty values (See Note 2).
  priorup: 1D ndarray
     Upper prior uncertainty values (See Note 2).
  numit: Scalar
     Total number of iterations.
  nchains: Scalar
     Number of simultaneous chains to run.
  walk: String
     Random walk algorithm:
     - 'mrw':  Metropolis random walk.
     - 'demc': Differential Evolution Markov chain.
  wlike: Boolean
     If True, calculate the likelihood in a wavelet-base.  This requires
     three additional parameters (See Note 3).
  leastsq: Boolean
     Perform a least-square minimization before the MCMC run.
  chisqscale: Boolean
     Scale the data uncertainties such that the reduced chi-squared = 1.
  grtest: Boolean
     Run Gelman & Rubin test.
  grexit: Boolean
     Exit the MCMC loop if the MCMC satisfies GR two consecutive times.
  burnin: Scalar
     Burned-in (discarded) number of iterations at the beginning
     of the chains.
  thinning: Integer
     Thinning factor of the chains (use every thinning-th iteration) used
     in the GR test and plots.
  plots: Boolean
     If True plot parameter traces, pairwise-posteriors, and posterior
     histograms.
  savefile: String
     If not None, filename to store allparams (with np.save).
  savemodel: String
     If not None, filename to store the values of the evaluated function
     (with np.save).
  comm: MPI Communicator
     A communicator object to transfer data through MPI.
  resume: Boolean
     If True resume a previous run.
  log: FILE pointer
     File object to write log into.

  Returns
  -------
  allparams: 2D ndarray
     An array of shape (nfree, numit-nchains*burnin) with the MCMC
     posterior distribution of the fitting parameters.
  bestp: 1D ndarray
     Array of the best fitting parameters.

  Notes
  -----
  1.- To set one parameter equal to another, set its stepsize to the
      negative index in params (Starting the count from 1); e.g.: to set
      the second parameter equal to the first one, do: stepsize[1] = -1.
  2.- If any of the fitting parameters has a prior estimate, e.g.,
        param[i] = p0 +up/-low,
      with up and low the 1sigma uncertainties.  This information can be
      considered in the MCMC run by setting:
      prior[i]    = p0
      priorup[i]  = up
      priorlow[i] = low
      All three: prior, priorup, and priorlow must be set and, furthermore,
      priorup and priorlow must be > 0 to be considered as prior.
  3.- FINDME WAVELET LIKELIHOOD

  Examples
  --------
  >>> # See examples: https://github.com/pcubillos/MCcubed/tree/master/examples

  Previous (uncredited) developers
  --------------------------------
  Kevin Stevenson    UCF  [email protected]
  """

  mu.msg(1, "{:s}\n  Multi-Core Markov-Chain Monte Carlo (MC3).\n"
            "  Version {:d}.{:d}.{:d}.\n"
            "  Copyright (c) 2015-2016 Patricio Cubillos and collaborators.\n"
            "  MC3 is open-source software under the MIT license "
            "(see LICENSE).\n{:s}\n\n".
            format(mu.sep, ver.MC3_VER, ver.MC3_MIN, ver.MC3_REV, mu.sep), log)

  # Import the model function:
  if type(func) in [list, tuple, np.ndarray]:
    if func[0] != 'hack':
      if len(func) == 3:
        sys.path.append(func[2])
      exec('from %s import %s as func'%(func[1], func[0]))
  elif not callable(func):
    mu.error("'func' must be either, a callable, or an iterable (list, "
             "tuple, or ndarray) of strings with the model function, file, "
             "and path names.", log)

  if np.ndim(params) == 1:  # Force it to be 2D (one for each chain)
    params  = np.atleast_2d(params)
  nparams = len(params[0])  # Number of model params
  ndata   = len(data)       # Number of data values
  # Set default uncertainties:
  if uncert is None:
    uncert = np.ones(ndata)
  # Set default boundaries:
  if pmin is None:
    pmin = np.zeros(nparams) - np.inf
  if pmax is None:
    pmax = np.zeros(nparams) + np.inf
  # Set default stepsize:
  if stepsize is None:
    stepsize = 0.1 * np.abs(params[0])
  # Set prior parameter indices:
  if (prior is None) or (priorup is None) or (priorlow is None):
    prior   = priorup = priorlow = np.zeros(nparams)  # Zero arrays
  iprior = np.where(priorlow != 0)[0]
  ilog   = np.where(priorlow <  0)[0]

  # Check that initial values lie within the boundaries:
  if np.any(np.asarray(params) < pmin):
    mu.error("One or more of the initial-guess values:\n{:s}\n are smaller "
      "than their lower boundaries:\n{:s}".format(str(params), str(pmin)), log)
  if np.any(np.asarray(params) > pmax):
    mu.error("One or more of the initial-guess values:\n{:s}\n are greater "
      "than their higher boundaries:\n{:s}".format(str(params), str(pmax)), log)

  nfree     = np.sum(stepsize > 0)        # Number of free parameters
  chainsize = int(np.ceil(numit/nchains)) # Number of iterations per chain
  ifree     = np.where(stepsize > 0)[0]   # Free   parameter indices
  ishare    = np.where(stepsize < 0)[0]   # Shared parameter indices
  # Number of model parameters (excluding wavelet parameters):
  if wlike:
    mpars  = nparams - 3
  else:
    mpars  = nparams

  if chainsize < burnin:
    mu.error("The number of burned-in samples ({:d}) is greater than "
             "the number of iterations per chain ({:d}).".
             format(burnin, chainsize), log)

  # Intermediate steps to run GR test and print progress report:
  intsteps   = chainsize / 10

  # Allocate arrays with variables:
  numaccept  = np.zeros(nchains)          # Number of accepted proposal jumps
  outbounds  = np.zeros((nchains, nfree), np.int)    # Out of bounds proposals
  allparams  = np.zeros((nchains, nfree, chainsize)) # Parameter's record
  if savemodel is not None:
    allmodel = np.zeros((nchains, ndata, chainsize)) # Fit model

  if resume:
    oldparams = np.load(savefile)
    nold = np.shape(oldparams)[2] # Number of old-run iterations
    allparams = np.dstack((oldparams, allparams))
    if savemodel is not None:
      allmodel  = np.dstack((np.load(savemodel), allmodel))
    # Set params to the last-iteration state of the previous run:
    params = np.repeat(params, nchains, 0)
    params[:,ifree] = oldparams[:,:,-1]
  else:
    nold = 0

  # Set MPI flag:
  mpi = comm is not None

  if mpi:
    from mpi4py import MPI
    # Send sizes info to other processes:
    array1 = np.asarray([mpars, chainsize], np.int)
    mu.comm_bcast(comm, array1, MPI.INT)

  # DEMC parameters:
  gamma  = 2.4 / np.sqrt(2*nfree)
  gamma2 = 0.001  # Jump scale factor of support distribution

  # Least-squares minimization:
  if leastsq:
    fitargs = (params[0], func, data, uncert, indparams, stepsize, pmin, pmax,
               prior, priorlow, priorup)
    fitchisq, dummy = mf.modelfit(params[0,ifree], args=fitargs)
    fitbestp = np.copy(params[0, ifree])
    mu.msg(1, "Least-squares best-fitting parameters: \n{:s}\n\n".
              format(str(fitbestp)), log)

  # Replicate to make one set for each chain: (nchains, nparams):
  if np.shape(params)[0] != nchains:
    params = np.repeat(params, nchains, 0)
    # Start chains with an initial jump:
    for p in ifree:
      # For each free param, use a normal distribution: 
      params[1:, p] = np.random.normal(params[0, p], stepsize[p], nchains-1)
      # Stay within pmin and pmax boundaries:
      params[np.where(params[:, p] < pmin[p]), p] = pmin[p]
      params[np.where(params[:, p] > pmax[p]), p] = pmax[p]
  
  # Update shared parameters:
  for s in ishare:
    params[:, s] = params[:, -int(stepsize[s])-1]

  # Calculate chi-squared for model using current params:
  models = np.zeros((nchains, ndata))
  if mpi:
    # Scatter (send) parameters to func:
    mu.comm_scatter(comm, params[:,0:mpars].flatten(), MPI.DOUBLE)
    # Gather (receive) evaluated models:
    mpimodels = np.zeros(nchains*ndata, np.double)
    mu.comm_gather(comm, mpimodels)
    # Store them in models variable:
    models = np.reshape(mpimodels, (nchains, ndata))
  else:
    for c in np.arange(nchains):
      fargs = [params[c, 0:mpars]] + indparams  # List of function's arguments
      models[c] = func(*fargs)

  # Calculate chi-squared for each chain:
  currchisq = np.zeros(nchains)
  c2        = np.zeros(nchains)  # No-Jeffrey's chisq
  for c in np.arange(nchains):
    if wlike: # Wavelet-based likelihood (chi-squared, actually)
      currchisq[c], c2[c] = dwt.wlikelihood(params[c, mpars:], models[c]-data,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
    else:
      currchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])

  # Scale data-uncertainties such that reduced chisq = 1:
  if chisqscale:
    chifactor = np.sqrt(np.amin(currchisq)/(ndata-nfree))
    uncert *= chifactor
    # Re-calculate chisq with the new uncertainties:
    for c in np.arange(nchains):
      if wlike: # Wavelet-based likelihood (chi-squared, actually)
        currchisq[c], c2[c] = dwt.wlikelihood(params[c,mpars:], models[c]-data,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
      else:
        currchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (params[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
    if leastsq:
      fitchisq = currchisq[0]

  # Get lowest chi-square and best fitting parameters:
  bestchisq = np.amin(c2)
  bestp     = np.copy(params[np.argmin(c2)])
  bestmodel = np.copy(models[np.argmin(c2)])

  if savemodel is not None:
    allmodel[:,:,0] = models

  # Set up the random walks:
  if   walk == "mrw":
    # Generate proposal jumps from Normal Distribution for MRW:
    mstep   = np.random.normal(0, stepsize[ifree], (chainsize, nchains, nfree))
  elif walk == "demc":
    # Support random distribution:
    support = np.random.normal(0, stepsize[ifree], (chainsize, nchains, nfree))
    # Generate indices for the chains such r[c] != c:
    r1 = np.random.randint(0, nchains-1, (nchains, chainsize))
    r2 = np.random.randint(0, nchains-1, (nchains, chainsize))
    for c in np.arange(nchains):
      r1[c][np.where(r1[c]==c)] = nchains-1
      r2[c][np.where(r2[c]==c)] = nchains-1

  # Uniform random distribution for the Metropolis acceptance rule:
  unif = np.random.uniform(0, 1, (chainsize, nchains))

  # Proposed iteration parameters and chi-square (per chain):
  nextp     = np.copy(params)    # Proposed parameters
  nextchisq = np.zeros(nchains)  # Chi square of nextp 

  # Gelman-Rubin exit flag:
  grflag = False

  # ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  # Start loop:
  mu.msg(1, "Start MCMC chains  ({:s})".format(time.ctime()), log)
  for i in np.arange(chainsize):
    # Proposal jump:
    if   walk == "mrw":
      jump = mstep[i]
    elif walk == "demc":
      jump = (gamma  * (params[r1[:,i]]-params[r2[:,i]])[:,ifree] +
              gamma2 * support[i]                                 )
    # Propose next point:
    nextp[:,ifree] = params[:,ifree] + jump

    # Check it's within boundaries: 
    outpars = np.asarray(((nextp < pmin) | (nextp > pmax))[:,ifree])
    outflag  = np.any(outpars, axis=1)
    outbounds += ((nextp < pmin) | (nextp > pmax))[:,ifree]
    for p in ifree:
      nextp[np.where(nextp[:, p] < pmin[p]), p] = pmin[p]
      nextp[np.where(nextp[:, p] > pmax[p]), p] = pmax[p]

    # Update shared parameters:
    for s in ishare:
      nextp[:, s] = nextp[:, -int(stepsize[s])-1]

    # Evaluate the models for the proposed parameters:
    if mpi:
      mu.comm_scatter(comm, nextp[:,0:mpars].flatten(), MPI.DOUBLE)
      mu.comm_gather(comm, mpimodels)
      models = np.reshape(mpimodels, (nchains, ndata))
    else:
      for c in np.where(~outflag)[0]:
        fargs = [nextp[c, 0:mpars]] + indparams  # List of function's arguments
        models[c] = func(*fargs)

    # Calculate chisq:
    for c in np.where(~outflag)[0]:
      if wlike: # Wavelet-based likelihood (chi-squared, actually)
        nextchisq[c], c2[c] = dwt.wlikelihood(nextp[c,mpars:], models[c]-data,
                 (nextp[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])
      else:
        nextchisq[c], c2[c] = cs.chisq(models[c], data, uncert,
                 (nextp[c]-prior)[iprior], priorlow[iprior], priorlow[iprior])

    # Reject out-of-bound jumps:
    nextchisq[np.where(outflag)] = np.inf
    # Evaluate which steps are accepted and update values:
    accept = np.exp(0.5 * (currchisq - nextchisq))
    accepted = accept >= unif[i]
    if i >= burnin:
      numaccept += accepted
    # Update params and chi square:
    params   [accepted] = nextp    [accepted]
    currchisq[accepted] = nextchisq[accepted]

    # Check lowest chi-square:
    if np.amin(c2) < bestchisq:
      bestp     = np.copy(params[np.argmin(c2)])
      bestmodel = np.copy(models[np.argmin(c2)])
      bestchisq = np.amin(c2)

    # Store current iteration values:
    allparams[:,:,i+nold] = params[:, ifree]
    if savemodel is not None:
      models[~accepted] = allmodel[~accepted,:,i+nold-1]
      allmodel[:,:,i+nold] = models
  
    # Print intermediate info:
    if ((i+1) % intsteps == 0) and (i > 0):
      mu.progressbar((i+1.0)/chainsize, log)
      mu.msg(1, "Out-of-bound Trials:\n {:s}".
                 format(np.sum(outbounds, axis=0)), log)
      mu.msg(1, "Best Parameters:   (chisq={:.4f})\n{:s}".
                 format(bestchisq, str(bestp)), log)

      # Gelman-Rubin statistic:
      if grtest and (i+nold) > burnin:
        psrf = gr.convergetest(allparams[:, :, burnin:i+nold+1:thinning])
        mu.msg(1, "Gelman-Rubin statistic for free parameters:\n{:s}".
                  format(psrf), log)
        if np.all(psrf < 1.01):
          mu.msg(1, "All parameters have converged to within 1% of unity.", log)
          # End the MCMC if all parameters satisfy GR two consecutive times:
          if grexit and grflag:
            # Let the workers know that the MCMC is stopping:
            if mpi:
              endflag = np.tile(np.inf, nchains*mpars)
              mu.comm_scatter(comm, endflag, MPI.DOUBLE)
            break
          grflag = True
        else:
          grflag = False
      # Save current results:
      if savefile is not None:
        np.save(savefile, allparams[:,:,0:i+nold])
      if savemodel is not None:
        np.save(savemodel, allmodel[:,:,0:i+nold])

  # Stack together the chains:
  chainlen = nold + i+1
  allstack = allparams[0, :, burnin:chainlen]
  for c in np.arange(1, nchains):
    allstack = np.hstack((allstack, allparams[c, :, burnin:chainlen]))
  # And the models:
  if savemodel is not None:
    modelstack = allmodel[0,:,burnin:chainlen]
    for c in np.arange(1, nchains):
      modelstack = np.hstack((modelstack, allmodel[c, :, burnin:chainlen]))

  # Print out Summary:
  mu.msg(1, "\nFin, MCMC Summary:\n------------------", log)

  nsample   = (i+1-burnin)*nchains
  ntotal    = np.size(allstack[0])
  BIC       = bestchisq + nfree*np.log(ndata)
  redchisq  = bestchisq/(ndata-nfree)
  sdr       = np.std(bestmodel-data)

  fmtlen = len(str(ntotal))
  mu.msg(1, "Burned in iterations per chain: {:{}d}".
             format(burnin,   fmtlen), log, 1)
  mu.msg(1, "Number of iterations per chain: {:{}d}".
             format(i+1, fmtlen), log, 1)
  mu.msg(1, "MCMC sample size:               {:{}d}".
             format(nsample,  fmtlen), log, 1)
  mu.msg(resume, "Total MCMC sample size:         {:{}d}".
             format(ntotal, fmtlen), log, 1)
  mu.msg(1, "Acceptance rate:   {:.2f}%\n ".
             format(np.sum(numaccept)*100.0/nsample), log, 1)

  meanp   = np.mean(allstack, axis=1) # Parameters mean
  uncertp = np.std(allstack,  axis=1) # Parameter standard deviation
  mu.msg(1, "Best-fit params    Uncertainties   Signal/Noise       Sample "
            "Mean", log, 1)
  for i in np.arange(nfree):
    mu.msg(1, "{: 15.7e}  {: 15.7e}   {:12.2f}   {: 15.7e}".
               format(bestp[ifree][i], uncertp[i],
                      np.abs(bestp[ifree][i])/uncertp[i], meanp[i]), log, 1)

  if leastsq and np.any(np.abs((bestp[ifree]-fitbestp)/fitbestp) > 1e-08):
    np.set_printoptions(precision=8)
    mu.warning("MCMC found a better fit than the minimizer:\n"
               " MCMC best-fitting parameters:       (chisq={:.8g})\n  {:s}\n"
               " Minimizer best-fitting parameters:  (chisq={:.8g})\n"
               "  {:s}".format(bestchisq, str(bestp[ifree]), 
                               fitchisq,  str(fitbestp)), log)

  fmtl = len("%.4f"%BIC)  # Length of string formatting
  mu.msg(1, " ", log)
  if chisqscale:
    mu.msg(1, "sqrt(reduced chi-squared) factor: {:{}.4f}".
               format(chifactor, fmtl), log, 1)
  mu.msg(1,   "Best-parameter's chi-squared:     {:{}.4f}".
               format(bestchisq, fmtl), log, 1)
  mu.msg(1,   "Bayesian Information Criterion:   {:{}.4f}".
               format(BIC,       fmtl), log, 1)
  mu.msg(1,   "Reduced chi-squared:              {:{}.4f}".
               format(redchisq,  fmtl), log, 1)
  mu.msg(1,   "Standard deviation of residuals:  {:.6g}\n".format(sdr), log, 1)


  if rms:
    rms, rmse, stderr, bs = ta.binrms(bestmodel-data)

  if plots:
    print("Plotting figures ...")
    # Extract filename from savefile:
    if savefile is not None:
      if savefile.rfind(".") == -1:
        fname = savefile[savefile.rfind("/")+1:] # Cut out file extention.
      else:
        fname = savefile[savefile.rfind("/")+1:savefile.rfind(".")]
    else:
      fname = "MCMC"
    # Trace plot:
    mp.trace(allstack,     thinning=thinning, savefile=fname+"_trace.png",
             sep=np.size(allstack[0])/nchains)
    # Pairwise posteriors:
    mp.pairwise(allstack,  thinning=thinning, savefile=fname+"_pairwise.png")
    # Histograms:
    mp.histogram(allstack, thinning=thinning, savefile=fname+"_posterior.png")
    # RMS vs bin size:
    if rms:
      mp.RMS(bs, rms, stderr, rmse, binstep=len(bs)/500+1,
                                              savefile=fname+"_RMS.png")
    if indparams != [] and np.size(indparams[0]) == ndata:
      mp.modelfit(data, uncert, indparams[0], bestmodel,
                                              savefile=fname+"_model.png")

  # Save definitive results:
  if savefile is not None:
    np.save(savefile,  allparams[:,:,:chainlen])
  if savemodel is not None:
    np.save(savemodel, allmodel [:,:,:chainlen])

  return allstack, bestp
示例#4
0
def prayer(configfile, nprays=0, savefile=None):
    """
  Implement prayer bead method to estimate parameter uncertainties.

  Parameters:
  -----------
  params: 1D-ndarray 
    Comment me, and all my friends.
  inonprior: 1D-ndarray
  stepsize: 1D-ndarray
  fit: a fits instance
  ncores: integer

  Notes:
  ------
  Believing in a prayer bead is a mere act of faith, we are scientists
  for god's sake!

  Modification History:
  ---------------------
  2012-10-29  patricio  Initial implementation.  [email protected]
  2013-09-03  patricio  Added documentation.  
  2014-05-19  patricio  Modified to work with MC3.
  """

    config = ConfigParser.SafeConfigParser()
    config.read([configfile])
    cfgsec = "MCMC"

    data = mu.parray(config.get(cfgsec, 'data'))
    if isinstance(data[0], str):
        array = mu.readbin(data[0])
        data = array[0]
        if len(array) == 2:
            uncert = array[1]
        else:
            uncert = mu.parray(config.get(cfgsec, 'uncert'))

    params = mu.parray(config.get(cfgsec, 'params'))
    if isinstance(params[0], str):
        array = mu.read2array(params[0])
        ninfo, nparams = np.shape(array)
        if ninfo == 7:  # The priors
            prior = array[4]
            priorlow = array[5]
            priorup = array[6]
        else:
            try:
                prior = mu.parray(config.get(cfgsec, 'prior'))
                priorlow = mu.parray(config.get(cfgsec, 'priorlow'))
                priorup = mu.parray(config.get(cfgsec, 'priorup'))
            except:
                prior = np.zeros(nparams)  # Empty arrays
                priorup = priorlow = np.array([])
                iprior = np.array([], int)

        if ninfo >= 4:  # The stepsize
            stepsize = array[3]
        else:
            stepsize = mu.parray(config.get(cfgsec, 'stepsize'))

        if ninfo >= 2:  # The boundaries
            pmin = array[1]
            pmax = array[2]
        else:
            pmin = mu.parray(config.get(cfgsec, 'pmin'))
            pmax = mu.parray(config.get(cfgsec, 'pmax'))
        params = array[0]  # The initial guess

    indparams = mu.parray(config.get(cfgsec, 'indparams'))
    if indparams != [] and isinstance(indparams[0], str):
        indparams = mu.readbin(indparams[0])

    # Number of fitting parameters:
    nfree = np.sum(stepsize > 0)
    ifree = np.where(stepsize > 0)[0]
    iprior = np.where(priorlow > 0)[0]

    # Get modeling function:
    func = mu.parray(config.get(cfgsec, 'func'))
    if type(func) in [list, tuple, np.ndarray]:
        if len(func) == 3:
            sys.path.append(func[2])
        exec('from %s import %s as func' % (func[1], func[0]))
    elif not callable(func):
        return

    # Number of iterations:
    if nprays == 0:
        nprays = ndata
        shifts = np.arange(1, ndata)
    else:
        shifts = np.random.randint(0, ndata, nprays - 1)

    # Allocate space for results:
    allfits = np.zeros((nprays, nfree))

    # Fit model:
    fitargs = (params, func, data, uncert, indparams, stepsize, pmin, pmax,
               (prior - params)[iprior], priorlow[iprior], priorup[iprior])
    chisq, dummy = mf.modelfit(params[ifree], args=fitargs)
    # Evaluate best model:
    fargs = [params] + indparams
    bestmodel = func(*fargs)
    chifactor = np.sqrt(chisq / (ndata - nfree))
    # Get residuals:
    residuals = data - bestmodel
    sigma = np.copy(uncert * chifactor)

    allfits[0] = params[ifree]

    for i in np.arange(nprays - 1):
        # Permuted data:
        pbdata = np.copy(bestmodel + np.roll(residuals, shifts[i]))
        # Permuted weights:
        pbunc = np.roll(sigma, shifts[i])
        # Fitting parameters:
        pbfit = np.copy(params)[ifree]
        # Fit model:
        fitargs = (params, func, pbdata, pbunc, indparams, stepsize, pmin,
                   pmax, (prior - params)[iprior], priorlow[iprior],
                   priorup[iprior])
        chisq, dummy = mf.modelfit(pbfit, args=fitargs)
        allfits[i + 1] = pbfit

    if savefile is not None:
        pbfile = open(savefile, "w")
        pbfile.write("Prayer-bead uncertainties:\n")
        pbunc = np.std(allfits, 0)
        for j in np.arange(nfree):
            pbfile.write("%s  " % str(pbunc[j]))
        pbfile.close()

    return allfits, residuals