示例#1
0
def eval_all(params):
    target_save_dir = osp.join(params['save_dir'], 'prepro',
                               params['dataset'] + '_' + params['splitBy'])
    model_dir = osp.join(params['save_dir'], 'model',
                         params['dataset'] + '_' + params['splitBy'])
    result_dir = osp.join('result',
                          params['dataset'] + '_' + params['splitBy'])

    if not osp.isdir(result_dir):
        os.makedirs(result_dir)

    if params['old']:
        params['data_json'] = 'old' + params['data_json']
        params['data_h5'] = 'old' + params['data_h5']
        params['image_feats_h5'] = 'old' + params['image_feats_h5']
        params['ann_feats_h5'] = 'old' + params['ann_feats_h5']
        params['id'] = 'old' + params['id']

    if params['dataset'] in ['refcoco', 'refcoco+', 'refcocog']:
        global_shapes = (224, 224)
    elif params['dataset'] == 'refgta':
        global_shapes = (480, 288)

    loader = DataLoader(params)

    featsOpt = {
        'sp_ann': osp.join(target_save_dir, params['sp_ann_feats']),
        'ann_input': osp.join(target_save_dir, params['ann_feats']),
        'img': osp.join(target_save_dir, params['image_feats']),
        'shapes': osp.join(target_save_dir, params['ann_shapes'])
    }
    loader.loadFeats(featsOpt)
    chainer.config.train = False
    chainer.config.enable_backprop = False

    gpu_id = params['gpu_id']
    cuda.get_device(gpu_id).use()
    xp = cuda.cupy

    ve = VisualEncoder(global_shapes=global_shapes).to_gpu(gpu_id)
    lm = LanguageModel(len(loader.ix_to_word), loader.seq_length,
                       global_shapes).to_gpu(gpu_id)

    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "ve.h5"), ve)
    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "lm.h5"), lm)

    predictions = []
    beam_all_results = []
    while True:
        data = loader.getTestBatch(params['split'], params)
        ref_ids = data['ref_ids']
        lang_last_ind = calc_max_ind(data['seqz'])
        feats = Variable(xp.array(data['feats'], dtype=xp.float32))
        sp_cxt_feats = Variable(
            xp.array(data['sp_cxt_feats'], dtype=xp.float32))
        sp_ann_feats = Variable(
            xp.array(data['sp_ann_feats'], dtype=xp.float32))
        local_shapes = data['local_shapes']
        coord = data['feats'][:, sum(ve.feat_ind[:1]):sum(ve.feat_ind[:2])]
        local_sp_coord, global_sp_coord = calc_coordinate_feature(
            coord, local_shapes, global_shapes=global_shapes)
        local_sp_coord, global_sp_coord = xp.array(local_sp_coord,
                                                   dtype=xp.float32), xp.array(
                                                       global_sp_coord,
                                                       dtype=xp.float32)

        vis_enc_feats = ve(feats, sp_cxt_feats, coord)
        vis_feats = vis_enc_feats
        sp_feats, sp_feats_emb = lm.calc_spatial_features(
            sp_cxt_feats, sp_ann_feats, local_sp_coord, global_sp_coord)
        if params['beam_width'] == 1:
            results = lm.max_sample(vis_feats)
        else:
            beam_results, _ = beam_search(lm, vis_feats, sp_feats,
                                          sp_feats_emb, coord,
                                          params['beam_width'])

            results = [result[0]['sent'] for result in beam_results]
            ppls = [result[0]['ppl'] for result in beam_results]

        for i, result in enumerate(results):
            gen_sentence = ' '.join(
                [loader.ix_to_word[str(w)] for w in result])
            if params['beam_width'] == 1:
                print(gen_sentence)
            else:
                print(gen_sentence, ', ppl : ', ppls[i])
            entry = {'ref_id': ref_ids[i], 'sent': gen_sentence}
            predictions.append(entry)
            if params['beam_width'] > 1:
                beam_all_results.append({
                    'ref_id': ref_ids[i],
                    'beam': beam_results[i]
                })
        print('evaluating validation performance... {}/{}'.format(
            data['bounds']['it_pos_now'], data['bounds']['it_max']))

        if data['bounds']['wrapped']:
            print('validation finished!')
            break
    lang_stats = language_eval(predictions, params['split'], params)
    print(lang_stats)

    print('sentence mean length: ',
          np.mean([len(pred['sent'].split()) for pred in predictions]))
    with open(
            result_dir + '/' + params['id'] + params['id2'] +
            str(params['beam_width']) + params['split'] + 'raw.json',
            'w') as f:
        json.dump(predictions, f)
    with open(
            result_dir + '/' + params['id'] + params['id2'] +
            str(params['beam_width']) + params['split'] + '.json', 'w') as f:
        json.dump(lang_stats, f)
    with open(
            result_dir + '/' + params['id'] + params['id2'] +
            str(params['beam_width']) + params['split'] + 'all_beam.json',
            'w') as f:
        json.dump(beam_all_results, f)
示例#2
0
def eval_all(params):
    target_save_dir = osp.join(params['save_dir'], 'prepro',
                               params['dataset'] + '_' + params['splitBy'])
    model_dir = osp.join(params['save_dir'], 'model',
                         params['dataset'] + '_' + params['splitBy'])

    if params['old']:
        params['data_json'] = 'old' + params['data_json']
        params['data_h5'] = 'old' + params['data_h5']
        params['image_feats'] = 'old' + params['image_feats']
        params['ann_feats'] = 'old' + params['ann_feats']
        params['id'] = 'old' + params['id']

    loader = DataLoader(params)

    featsOpt = {
        'ann': osp.join(target_save_dir, params['ann_feats']),
        'img': osp.join(target_save_dir, params['image_feats'])
    }
    loader.loadFeats(featsOpt)
    chainer.config.train = False
    chainer.config.enable_backprop = False

    gpu_id = params['gpu_id']
    cuda.get_device(gpu_id).use()
    xp = cuda.cupy

    if 'attention' in params['id']:
        print('attn')
        le = LanguageEncoderAttn(len(loader.ix_to_word)).to_gpu(gpu_id)
    else:
        le = LanguageEncoder(len(loader.ix_to_word)).to_gpu(gpu_id)
    ve = VisualEncoder().to_gpu(gpu_id)
    cca = CcaEmbedding().to_gpu(gpu_id)
    lm = LanguageModel(len(loader.ix_to_word),
                       loader.seq_length).to_gpu(gpu_id)

    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "ve.h5"), ve)
    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "le.h5"), le)
    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "cca.h5"), cca)
    serializers.load_hdf5(
        osp.join(model_dir, params['id'] + params['id2'] + "lm.h5"), lm)

    predictions = []
    beam_all_results = []
    while True:
        data = loader.getTestBatch(params['split'], params)
        ref_ids = data['ref_ids']
        image_id = data['image_id']
        lang_last_ind = calc_max_ind(data['seqz'])
        feats = Variable(xp.array(data['feats'], dtype=xp.float32))
        vis_enc_feats = ve(feats)
        lang_enc_feats = vis_enc_feats  ##fake
        _, vis_emb_feats = cca(vis_enc_feats, lang_enc_feats)
        vis_feats = vis_combine(vis_enc_feats, vis_emb_feats)

        if params['beam_width'] == 1:
            results = lm.max_sample(vis_feats)
        else:
            beam_results = beam_search(lm, vis_feats, params['beam_width'])
            results = [result[0]['sent'] for result in beam_results]
            ppls = [result[0]['ppl'] for result in beam_results]

        for i, result in enumerate(results):
            gen_sentence = ' '.join(
                [loader.ix_to_word[str(w)] for w in result])
            if params['beam_width'] == 1:
                print(gen_sentence)
            else:
                print(gen_sentence, 'image_id : ', image_id)
            entry = {'ref_id': ref_ids[i], 'sent': gen_sentence}
            predictions.append(entry)
            if params['beam_width'] > 1:
                beam_all_results.append({
                    'ref_id': ref_ids[i],
                    'beam': beam_results[i]
                })
        print('evaluating validation performance... {}/{}'.format(
            data['bounds']['it_pos_now'], data['bounds']['it_max']))

        if data['bounds']['wrapped']:
            print('validation finished!')
            break
    lang_stats = language_eval(predictions, params['split'], params)
    print(lang_stats)