示例#1
0
def main(args):

    features, targets = generate_synthetic_data(args.model_type,
                                                args.num_samples)

    # split train/test sets
    x_train, x_val, y_train, y_val = train_test_split(features,
                                                      targets,
                                                      test_size=0.2)

    db_train = tf.data.Dataset.from_tensor_slices(
        (x_train, y_train)).batch(args.batch_size_train)
    db_val = tf.data.Dataset.from_tensor_slices(
        (x_val, y_val)).batch(args.batch_size_eval)

    if args.model_type == 'MLP':
        model = MLP(num_inputs=Constants._MLP_NUM_FEATURES,
                    num_layers=Constants._MLP_NUM_LAYERS,
                    num_dims=Constants._MLP_NUM_DIMS,
                    num_outputs=Constants._NUM_TARGETS,
                    dropout_rate=args.dropout)
    elif args.model_type == 'TCN':
        model = TCN(nb_filters=Constants._TCN_NUM_FILTERS,
                    kernel_size=Constants._TCN_KERNEL_SIZE,
                    nb_stacks=Constants._TCN_NUM_STACK,
                    dilations=Constants._TCN_DIALATIONS,
                    padding=Constants._TCN_PADDING,
                    dropout_rate=args.lr)

    criteon = keras.losses.MeanSquaredError()
    optimizer = keras.optimizers.Adam(learning_rate=args.lr)

    for epoch in range(args.max_epoch):
        for step, (x, y) in enumerate(db_train):
            with tf.GradientTape() as tape:
                logits = model(x)
                loss = criteon(y, logits)
            grads = tape.gradient(loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            if step % 100 == 0:
                print('Epoch: {}, Step: {}/{}, Loss: {}'.format(
                    epoch, step, int(x_train.shape[0] / args.batch_size_train),
                    loss))

        # Perform inference and measure the speed every epoch
        start_time = time.time()
        for _, (x, _) in enumerate(db_val):
            _ = model.predict(x)
        end_time = time.time()

        print("Inference speed: {} samples/s\n".format(
            x_val.shape[0] / (end_time - start_time)))
示例#2
0
        for x, y in tqdm(train_loader):
            padded_text, lens, mask = seq_indexer.add_padding_tensor(
                x, gpu=args.gpu)
            label = label_indexer.instance2tensor(y, gpu=args.gpu)
            y = model(padded_text, lens, mask)
            loss = criterion(y, label)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            optimizer.zero_grad()

        print('epoch', epoch + 1, ' loss: ',
              train_loss / (len(dataset.train_word) / args.batch_size))

        pred = model.predict(dataset.train_word,
                             embedding_indexer=seq_indexer,
                             label_indexer=label_indexer,
                             batch_size=args.batch_size)
        train_score = eval.get_socre(pred, dataset.train_label)

        pred = model.predict(dataset.dev_word,
                             embedding_indexer=seq_indexer,
                             label_indexer=label_indexer,
                             batch_size=args.batch_size)
        dev_score = eval.get_socre(pred, dataset.dev_label)

        pred = model.predict(dataset.test_word,
                             embedding_indexer=seq_indexer,
                             label_indexer=label_indexer,
                             batch_size=args.batch_size)
        test_score = eval.get_socre(pred, dataset.test_label)