示例#1
0
def _CUB200():
    """
    CUB200数据集
    :return:
    """
    # 定义模型 定义评价 优化器等
    lr = 1e-4
    class_num = 200
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    print("cuda:0,1,2,3")
    device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
    model = Net(resnet_for_pmg.resnet50(pretrained=True), class_num)
    device_ids = [0, 1, 2, 3]
    model = nn.DataParallel(model, device_ids=device_ids).cuda(0)
    model.to(f'cuda:{model.device_ids[0]}')
    criterion = torch.nn.CrossEntropyLoss()

    optimzer = torch.optim.SGD(
        [
            {
                'params': model.module.pmg.features.parameters(),
                'lr': lr * 1
            },
            {
                'params': model.module.pmg.classifier_concat.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.classifier1.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.classifier2.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.classifier3.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.conv_block1.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.conv_block2.parameters(),
                'lr': lr * 10
            },
            {
                'params': model.module.pmg.conv_block3.parameters(),
                'lr': lr * 10
            },
            # {'params': model.module.pmg.map1.parameters(), 'lr': lr * 10},
            # {'params': model.module.pmg.map2.parameters(), 'lr': lr * 10},
            # {'params': model.module.pmg.fc.parameters(), 'lr': lr * 10},
        ],
        lr=lr,
        momentum=0.9,
        weight_decay=5e-4)

    # torch.optim.lr_scheduler.StepLR(optimzer, 10, gamma=0.94, last_epoch=-1)
    torch.optim.lr_scheduler.CosineAnnealingLR(optimzer, T_max=10)
    epochs = 200
    batchSize = 32
    worker = 4
    modelConfig = {
        'model': model,
        'criterion': criterion,
        'optimzer': optimzer,
        'epochs': epochs,
        'device': device
    }

    from torchvision import transforms as T
    # 自定义数据增强方式
    trainTransforms = T.Compose([
        T.Resize(550),
        T.RandomCrop(448, padding=8),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        # T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    testTransforms = T.Compose([
        T.Resize(550),
        T.CenterCrop(448),
        T.ToTensor(),
        T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        # T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    trainLoader, testLoader, validLoader, trainLength, testLength, validLength = chooseData(
        'CUB200', batchSize, worker, trainTransforms, testTransforms)

    # 没有验证集,所以使用测试集来做验证集
    dataConfig = {
        'trainLoader': trainLoader,
        'validLoader': testLoader,
        'trainLength': trainLength,
        'validLength': testLength
    }

    modelPath = os.path.join(os.getcwd(), 'checkpoints', '_CUB200.pth')
    lastModelPath = os.path.join(os.getcwd(), 'checkpoints',
                                 '_CUB200_last.pth')
    historyPath = os.path.join(os.getcwd(), 'historys', '_CUB200.npy')
    logPath = os.path.join(os.getcwd(), 'logs', '_CUB200.txt')

    logConfig = {
        'modelPath': modelPath,
        'historyPath': historyPath,
        'logPath': logPath,
        'lastModelPath': lastModelPath
    }

    train(modelConfig, dataConfig, logConfig)
示例#2
0
def _stanfordDogs():
    """
     StanfordDogs数据集
     :return:
     """

    # 定义模型 定义评价 优化器等
    lr = 1e-4
    class_num = 120
    print("cuda:2")
    device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
    model = Net(resnet_for_pmg.resnet50(pretrained=True), class_num)
    device_ids = [0]
    model = nn.DataParallel(model, device_ids=device_ids).cuda(0)
    model.to(f'cuda:{model.device_ids[0]}')
    criterion = torch.nn.CrossEntropyLoss()

    optimzer = torch.optim.SGD([
        {
            'params': model.module.pmg.features.parameters(),
            'lr': lr * 1
        },
        {
            'params': model.module.pmg.classifier1.parameters(),
            'lr': lr * 10
        },
        {
            'params': model.module.pmg.conv_block1.parameters(),
            'lr': lr * 10
        },
        {
            'params': model.module.pmg.conv_block2.parameters(),
            'lr': lr * 10
        },
        {
            'params': model.module.pmg.conv_block3.parameters(),
            'lr': lr * 10
        },
        {
            'params': model.module.pmg.map1.parameters(),
            'lr': lr * 10
        },
        {
            'params': model.module.pmg.map2.parameters(),
            'lr': lr * 10
        },
    ],
                               lr=lr,
                               momentum=0.9,
                               weight_decay=5e-4)

    # torch.optim.lr_scheduler.StepLR(optimzer, 10, gamma=0.94, last_epoch=-1)
    torch.optim.lr_scheduler.CosineAnnealingLR(optimzer, T_max=10)
    epochs = 200
    batchSize = 15
    worker = 2
    modelConfig = {
        'model': model,
        'criterion': criterion,
        'optimzer': optimzer,
        'epochs': epochs,
        'device': device
    }

    from torchvision import transforms as T
    # 自定义数据增强方式
    # normalize 加快收敛
    # normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    trainTransforms = T.Compose([
        T.Resize(256),
        T.RandomRotation(15),
        # T.RandomResizedCrop(224,scale=(0.85,1.15)),
        T.RandomCrop(224),
        T.ToTensor(),
        T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    testTransforms = T.Compose([
        T.Resize(256),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])

    trainLoader, testLoader, validLoader, trainLength, testLength, validLength = chooseData(
        'STANFORDDOGS', batchSize, worker, trainTransforms, testTransforms)
    # 没有验证集,所以使用测试集来做验证集
    dataConfig = {
        'trainLoader': trainLoader,
        'validLoader': testLoader,
        'trainLength': trainLength,
        'validLength': testLength
    }

    modelPath = os.path.join(os.getcwd(), 'checkpoints', '_stanforddogs.pth')
    lastModelPath = os.path.join(os.getcwd(), 'checkpoints',
                                 '_stanforddogs_last.pth')
    historyPath = os.path.join(os.getcwd(), 'historys', '_stanforddogs.npy')
    logPath = os.path.join(os.getcwd(), 'logs', '_stanforddogs.txt')

    logConfig = {
        'modelPath': modelPath,
        'historyPath': historyPath,
        'logPath': logPath,
        'lastModelPath': lastModelPath
    }

    train(modelConfig, dataConfig, logConfig)