def create_subgraph_for_person_or_organization(original_tokens: List[str]): """ Creates a subgraph (list of concepts and vector of parents) for PERSON or ORGANIZATION Has as input the original tokens in the sentence """ # concepts list concepts: List[Concept] = [] wiki_literal = '_'.join(original_tokens) wiki_literal_node = Concept(wiki_literal, wiki_literal) name_node = Concept('','name') op_nodes = [] for original_token in original_tokens: op_nodes.append(Concept(original_token,original_token)) concepts.append(wiki_literal_node) concepts.append(name_node) concepts.extend(op_nodes) # parent vector vector_of_parents = [] # wiki vector_of_parents.append([-1]) # name vector_of_parents.append([-1]) # op literals (have parent name node) op_literals_parent = [[1] for i in range(len(op_nodes))] vector_of_parents.extend(op_literals_parent) return concepts, vector_of_parents
def test_create_from_amr_example_2(): amr_str = """(a / and~e.0 :op2 (p / possible-01~e.8 :ARG1 (a3 / avoid-01~e.10 :ARG0 (h / he~e.7) :ARG1 (c / censure-01~e.12 :ARG1 h)) :ARG1-of (a2 / actual-02~e.9) :manner (p2 / promise-01~e.5 :polarity~e.2 -~e.2 :ARG0 h :mod (a4 / any~e.4))))""" amr = AMR.parse_string(amr_str) custom_amr = CustomizedAMR() custom_amr.create_custom_AMR(amr) generated_concepts = IdentifiedConcepts() generated_concepts.create_from_amr('amr_id_2', amr) expected_concepts = IdentifiedConcepts() expected_concepts.amr_id = 'amr_id_2' expected_concepts.ordered_concepts = [ Concept('a', 'and'), Concept('-', '-', 0), Concept('a4', 'any'), Concept('p2', 'promise-01'), Concept('h', 'he'), Concept('p', 'possible-01'), Concept('a2', 'actual-02'), Concept('a3', 'avoid-01'), Concept('c', 'censure-01') ] assert_identified_concepts(expected_concepts, generated_concepts)
def test_create_from_amr_example_reentrancy(): amr_str = """(r / receive-01~e.4 :ARG0 (w / we~e.0) :ARG1 (t / thing~e.7 :ARG0-of~e.7 (r2 / remind-01~e.7 :ARG1 (p / pay-01~e.6 :ARG0 w) :ARG2 w)) :ARG2~e.8 (h / hospital~e.10) :time (n / now~e.2) :time (a / already~e.3))""" amr = AMR.parse_string(amr_str) generated_concepts = IdentifiedConcepts() generated_concepts.create_from_amr('amr_id_reentrancy', amr) expected_concepts = IdentifiedConcepts() expected_concepts.amr_id = 'amr_id_reentrancy' expected_concepts.ordered_concepts = [ Concept('w', 'we'), Concept('n', 'now'), Concept('a', 'already'), Concept('r', 'receive-01'), Concept('p', 'pay-01'), Concept('r2', 'remind-01'), Concept('t', 'thing'), Concept('h', 'hospital') ] assert_identified_concepts(expected_concepts, generated_concepts)
def test_strip_concept_sense(): concept_name = 'recommend-01' stripped_concept = Concept.strip_concept_sense(concept_name) expected_concept = 'recommend' assert stripped_concept == expected_concept concept_name = 'go' stripped_concept = Concept.strip_concept_sense(concept_name) expected_concept = 'go' assert stripped_concept == expected_concept concept_name = '-' stripped_concept = Concept.strip_concept_sense(concept_name) expected_concept = '-' assert stripped_concept == expected_concept
def test_create_from_custom_amr_example_1(): amr: AMR = AMR() amr.node_to_concepts = {'i': 'it', 'v': 'vigorous', 'a': 'advocate-01', 'r': 'recommend-01'} amr.node_to_tokens = {'i': ['0'], 'v': ['3'], 'a': ['4'], 'r': ['1']} amr.relation_to_tokens = {'manner': [('2', 'a')]} amr['i'] = {} amr['v'] = {} amr['a'] = {'ARG1': [('i',)], 'manner': [('v',)]} amr['r'] = {'ARG1': [('a',)]} generated_concepts = IdentifiedConcepts() generated_concepts.create_from_amr('amr_id_1', amr) expected_concepts = IdentifiedConcepts() expected_concepts.amr_id = 'amr_id_1' expected_concepts.ordered_concepts = [Concept('i', 'it'), Concept('r', 'recommend-01'), Concept('v', 'vigorous'), Concept('a', 'advocate-01')] assert_identified_concepts(expected_concepts, generated_concepts)
def test_generate_dataset_entry(): amr_str = """(r / recommend-01~e.1 :ARG1 (a / advocate-01~e.4 :ARG1 (i / it~e.0) :manner~e.2 (v / vigorous~e.3)))""" sentence = """It should be vigorously advocated .""" generated_entry: ArcsTrainingEntry = generate_dataset_entry('amr_id', amr_str, sentence, 0, 1, False, False) expected_identified_concepts = IdentifiedConcepts() expected_identified_concepts.amr_id = 'amr_id' expected_identified_concepts.ordered_concepts = [Concept('', 'ROOT'), Concept('i', 'it'), Concept('r', 'recommend-01'), Concept('v', 'vigorous'), Concept('a', 'advocate-01')] expected_parent_vectors = [(-1, 4, 0, 4, 2)] assert_identified_concepts(expected_identified_concepts, generated_entry.identified_concepts) assert_parent_vectors(expected_parent_vectors, generated_entry.parent_vectors)
def test_generate_parent_vector_example_2(): amr_str = """(r / recommend-01~e.1 :ARG1 (a / advocate-01~e.4 :ARG1 (i / it~e.0) :manner~e.2 (v / vigorous~e.3)))""" amr: AMR = AMR.parse_string(amr_str) identified_concepts = IdentifiedConcepts() identified_concepts.ordered_concepts = [ Concept('', 'ROOT'), Concept('i', 'it'), Concept('r', 'recommend-01'), Concept('v', 'vigorous'), Concept('a', 'advocate-01') ] generated_parent_vector = generate_parent_vectors(amr, identified_concepts) expected_parent_vector = [[-1, 4, 0, 4, 2]] assert_parent_vectors(expected_parent_vector, generated_parent_vector)
def test_create_from_amr_example_1(): amr_str = """(r / recommend-01~e.1 :ARG1 (a / advocate-01~e.4 :ARG1 (i / it~e.0) :manner~e.2 (v / vigorous~e.3)))""" amr = AMR.parse_string(amr_str) generated_concepts = IdentifiedConcepts() generated_concepts.create_from_amr('amr_id_1', amr) expected_concepts = IdentifiedConcepts() expected_concepts.amr_id = 'amr_id_1' expected_concepts.ordered_concepts = [ Concept('i', 'it'), Concept('r', 'recommend-01'), Concept('v', 'vigorous'), Concept('a', 'advocate-01') ] assert_identified_concepts(expected_concepts, generated_concepts)
def test_generate_parent_vector(): amr: AMR = AMR() amr.roots = ['r'] amr.reentrance_triples = [] amr.node_to_concepts = {'i': 'it', 'v': 'vigorous', 'a': 'advocate-01', 'r': 'recommend-01'} amr.node_to_tokens = {'i': ['0'], 'v': ['3'], 'a': ['4'], 'r': ['1']} amr.relation_to_tokens = {'manner': [('2', 'a')]} amr['i'] = {} amr['v'] = {} amr['a'] = {'ARG1': [('i',)], 'manner': [('v',)]} amr['r'] = {'ARG1': [('a',)]} identified_concepts = IdentifiedConcepts() identified_concepts.ordered_concepts = [Concept('', 'ROOT'), Concept('i', 'it'), Concept('r', 'recommend-01'), Concept('v', 'vigorous'), Concept('a', 'advocate-01')] generated_parent_vector = generate_parent_vectors(amr, identified_concepts, 1) expected_parent_vector = [(-1, 4, 0, 4, 2)] assert_parent_vectors(expected_parent_vector, generated_parent_vector)
def test_generate_amr_node_for_vector_of_parents(): identified_concepts: IdentifiedConcepts = IdentifiedConcepts() identified_concepts.ordered_concepts = [Concept('', 'ROOT'), # 0 Concept('i', 'it'), # 1 Concept('r', 'recommend-01'), # 2 Concept('v', 'vigorous'), # 3 Concept('a', 'advocate-01') # 4 ] predicted_vector_of_parents = [[-1], [4], [0], [4], [2]] relations_dict = { ('recommend-01', 'advocate-01'): 'ARG1', ('advocate-01', 'it'): 'ARG1', ('advocate-01', 'vigorous'): 'manner' } amr: Node = generate_amr_node_for_vector_of_parents(identified_concepts, predicted_vector_of_parents, relations_dict) generated_amr_str = amr.amr_print_with_reentrancy() gold_amr_str = """(r / recommend-01~e.1 :ARG1 (a / advocate-01~e.4 :ARG1 (i / it~e.0) :manner~e.2 (v / vigorous~e.3)))""" smatch = calculate_smatch(generated_amr_str, gold_amr_str) assert smatch == 1
def test_post_processing_on_parent_vector(): sentence = 'Comrade PERSON once said that the Communist Party will not be overthrown - ' \ 'if it falls , it will be brought down from within the party itself .' metadata = {1: ['Deng', 'Xiaoping']} identified_concepts = IdentifiedConcepts() identified_concepts.ordered_concepts = [Concept('', 'ROOT'), Concept('c', 'comrade'), Concept('h', 'have-org-role-91'), Concept('p', 'PERSON'), Concept('o', 'once'), Concept('s', 'say-01'), Concept('p2', 'political-party'), Concept('Communist_Party_of_China', 'Communist_Party_of_China'), Concept('n2', 'name'), Concept('Communist', 'Communist'), Concept('Party', 'Party'), Concept('-', '-'), Concept('o', 'overthrow-01'), Concept('a', 'and'), Concept('f', 'fall-05'), Concept('b', 'bring-down'), Concept('p3', 'person'), Concept('h2', 'have-org-role-91') ] vector_of_parents = [[-1], [2], [3], [5], [5], [0], [12, 14, 15, 16, 17], [6], [6], [8], [8], [12], [13], [5], [15], [13], [15], [16]] post_processing_on_parent_vector(identified_concepts, vector_of_parents, sentence, metadata) expected_ordered_concepts = [Concept('', 'ROOT'), Concept('c', 'comrade'), Concept('h', 'have-org-role-91'), Concept('p', 'person'), Concept('o', 'once'), Concept('s', 'say-01'), Concept('p2', 'political-party'), Concept('Communist_Party_of_China', 'Communist_Party_of_China'), Concept('n2', 'name'), Concept('Communist', 'Communist'), Concept('Party', 'Party'), Concept('-', '-'), Concept('o', 'overthrow-01'), Concept('a', 'and'), Concept('f', 'fall-05'), Concept('b', 'bring-down'), Concept('p3', 'person'), Concept('h2', 'have-org-role-91'), Concept('Deng_Xiaoping', 'Deng_Xiaoping'), Concept('', 'name'), Concept('Deng', 'Deng'), Concept('Xiaoping', 'Xiaoping') ] expected_vector_of_parents = [[-1], [2], [3], [5], [5], [0], [12, 14, 15, 16, 17], [6], [6], [8], [8], [12], [13], [5], [15], [13], [15], [16], [3], [3], [19], [19]] assert identified_concepts.ordered_concepts == expected_ordered_concepts assert vector_of_parents == expected_vector_of_parents
def test_generate_parent_vector_example_2(): amr_str = """(m / man~e.2 :ARG1-of (m2 / marry-01~e.1) :ARG0-of (l / love-01~e.9 :ARG1~e.10 (y / you~e.11) :ARG1-of (r / real-04~e.6) :condition-of~e.4 (a3 / and~e.16 :op1 (g / go-06~e.14 :ARG2 (a / ahead~e.15) :mod (j / just~e.13)) :op2 (o2 / or~e.22 :op1 (f / file-01~e.17 :ARG4~e.18 (d / divorce-01~e.19) :time (n / now~e.20)) :op2 (m3 / move-01~e.25 :ARG2 (o / out-06~e.26 :ARG2~e.27 (h / house~e.29 :poss~e.28 m~e.28)) :time n~e.30 :mod (a2 / at-least~e.23,24))))))""" amr: AMR = AMR.parse_string(amr_str) identified_concepts = IdentifiedConcepts() identified_concepts.ordered_concepts = [ Concept('', 'ROOT'), # 0 Concept('m2', 'marry-01'), # 1 Concept('m', 'man'), # 2 Concept('r', 'real-04'), # 3 Concept('l', 'love-01'), # 4 Concept('y', 'you'), # 5 Concept('j', 'just'), # 6 Concept('g', 'go-06'), # 7 Concept('a', 'ahead'), # 8 Concept('a3', 'and'), # 9 Concept('f', 'file-01'), # 10 Concept('d', 'divorce-01'), # 11 Concept('n', 'now'), # 12 Concept('o2', 'or'), # 13 Concept('a2', 'at-least'), # 14 Concept('m3', 'move-01'), # 15 Concept('o', 'out-06'), # 16 Concept('h', 'house') # 17 ] generated_parent_vector = generate_parent_vectors(amr, identified_concepts, 2) expected_parent_vector = [ (-1, 2, 0, 4, 2, 4, 7, 9, 7, 4, 13, 10, 10, 9, 15, 13, 15, 16), (-1, 2, 0, 4, 2, 4, 7, 9, 7, 4, 13, 10, 15, 9, 15, 13, 15, 16) ] assert_parent_vectors(expected_parent_vector, generated_parent_vector)
def test__create_from_amr_with_2_polarites(): amr_str = """(a / and~e.0 :op2 (p2 / practice-01~e.13 :ARG1 (l / loan-01~e.12 :ARG2 (p / person~e.11 :ARG0-of~e.11 (s / study-01~e.11))) :mod (s2 / sane~e.10 :polarity~e.10 -~e.10) :ARG1-of (i2 / identical-01~e.16 :ARG2~e.19 (p3 / practice-01~e.24 :ARG1 (l2 / loan-01~e.23 :ARG1 (m / mortgage-01~e.22)) :mod (s3 / sane~e.21 :polarity~e.21 -~e.21)) :manner (w / way~e.18 :mod (e / every~e.18))) :ARG0-of (c2 / cause-01~e.3,8 :ARG1 (b / be-located-at-91~e.5,7 :ARG1 (t / they~e.4) :ARG2 (t2 / there~e.6)) :mod (o / only~e.2))))""" amr: AMR = AMR.parse_string(amr_str) generated_concepts = IdentifiedConcepts() generated_concepts.create_from_amr('amr_2_polarities', amr) expected_concepts = IdentifiedConcepts() expected_concepts.amr_id = 'amr_2_polarities' expected_concepts.ordered_concepts = [ Concept('a', 'and'), Concept('o', 'only'), Concept('c2', 'cause-01'), Concept('t', 'they'), Concept('b', 'be-located-at-91'), Concept('t2', 'there'), Concept('-', '-', 0), Concept('s2', 'sane'), Concept('s', 'study-01'), Concept('p', 'person'), Concept('l', 'loan-01'), Concept('p2', 'practice-01'), Concept('i2', 'identical-01'), Concept('e', 'every'), Concept('w', 'way'), Concept('-', '-', 1), Concept('s3', 'sane'), Concept('m', 'mortgage-01'), Concept('l2', 'loan-01'), Concept('p3', 'practice-01') ] assert_identified_concepts(expected_concepts, generated_concepts)